版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市廬陽區(qū)第六中學2026屆高二數(shù)學第一學期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,若,,則外接圓半徑為()A. B.C. D.2.南宋數(shù)學家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.6013.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.4.已知是橢圓的左焦點,為橢圓上任意一點,點坐標為,則的最大值為()A. B.13C.3 D.55.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.46.設(shè)等比數(shù)列的前項和為,若,,則()A.66 B.65C.64 D.637.定義焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對相關(guān)曲線.已知,是一對相關(guān)曲線的焦點,Р是這對相關(guān)曲線在第一象限的交點,則點Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定8.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.39.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或1110.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.11.已知是數(shù)列的前項和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列12.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線過點,且原點到直線l的距離為,則直線方程是______14.如圖,把橢圓的長軸八等分,過每個分點作軸的垂線交橢圓的上半部分于,,,七個點,是橢圓的一個焦點,則的值為__________15.直線與圓交于A、B兩點,當弦AB的長度最短時,則三角形ABC的面積為________16.已知點是橢圓上任意一點,則點到直線距離的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角余弦值.18.(12分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.19.(12分)某學校為了調(diào)查本校學生在一周內(nèi)零食方面的支出情況,抽出了一個容量為的樣本,分成四組,,,,其頻率分布直方圖如圖所示,其中支出金額在元的學生有180人.(1)請求出的值;(2)如果采用分層抽樣的方法從,內(nèi)共抽取5人,然后從中選取2人參加學校的座談會,求在,內(nèi)正好各抽取一人的概率為多少.20.(12分)已知函數(shù),且)的圖象經(jīng)過點和
.(1)求實數(shù),的值;(2)若,求數(shù)列前項和
.21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設(shè)等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?22.(10分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A2、B【解析】先由遞推關(guān)系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B3、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)4、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B5、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A6、B【解析】根據(jù)等比數(shù)列前項和的片段和性質(zhì)求解即可.【詳解】解:由題知:,,,所以,,成等比數(shù)列,即5,15,成等比數(shù)列,所以,解得.故選:B.7、A【解析】設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點的距離公式將點的坐標用表示,從而可判斷出點與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點到圓心的距離為,所以點Р在以為直徑的圓外.故選:A.8、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.9、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標準式方程得(x+1)2+(y﹣2)2=5,圓心坐標為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關(guān)系10、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:11、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因為,所以所以當時,時,所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點睛】要注意由求要分兩步:1.時,2.時.12、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點為,漸近線方程為則又解得.則焦距為.選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線斜率不存在不滿足題意,即設(shè)直線的點斜式方程,再利用點到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當直線斜率不存在時,顯然不滿足題意.②當直線斜率存在時,設(shè)直線為.原點到直線l的距離為,即直線方程為.故答案為:.14、28【解析】設(shè)橢圓的另一個焦點為由橢圓的幾何性質(zhì)可知:,同理可得,且,故,故答案為.15、【解析】由于直線過定點,所以當時,弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因為直線恒過定點,圓的圓心,半徑為,所以當時,弦AB的長度最短,因為,所以,所以三角形ABC的面積為,故答案為:16、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點到直線的最小值.【詳解】設(shè)與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標系,設(shè),即可得到點,,的坐標,最后利用空間向量法求出二面角的余弦值;【小問1詳解】證明:連接DE因為,且D為AC的中點,所以因為,且D為AC的中點,所以因為平面BDE,平面BDE,且,所以平面因為,所以平面BDE,所以【小問2詳解】解:由(1)可知因為平面平面,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則18、(1);(2).【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因為平面,所以,平面,,所以,直線到平面的距離為.19、(1);(2).【解析】(1)根據(jù)頻率分布直方圖求出[50,60]的頻率,180除以該頻率即為n的值;(2)將的樣本編號為a、b,將的樣本編號為A、B、C,利用列舉法即可求概率.【小問1詳解】由于支出金額在的頻率為,∴.【小問2詳解】采用分層抽樣抽取的的人數(shù)比應(yīng)為2:3,∴5人中有2人零食支出位于,記為、;有3人零食支出在,記為A、B、C.從這5人中選取2人有,,,,,,,,,,共10種情況;其中內(nèi)正好各抽取一人有,,,,,,共6種情況.∴在內(nèi)正好各抽取一人的概率為.20、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結(jié)合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.21、答案見解析【解析】由已知條件可得,假設(shè)時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當時,,得,從而,當時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當?shù)炔顢?shù)列的前n項和存在最小值時,假設(shè)時,取最小值,所以;若補充條件是①,因為,,從而,由得,所以,由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以,故實數(shù)的取值范圍為若補充條件是②,由,即,又,所以.所以,由于該數(shù)列是遞減數(shù)列,所以不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗生素降階梯療法
- 六年級上冊數(shù)學期末試卷及答案
- 幼兒園安全事故防范課件
- 選煤廠安全培訓書籍目錄課件
- 2026年網(wǎng)絡(luò)科技公司內(nèi)容編輯招聘熱點追蹤與文案撰寫試題含答案
- 2026年煙草筆試英語翻譯測評含答案
- 診療規(guī)范與指南培訓課件
- 2026年鄭州電力高等專科學校高職單招職業(yè)適應(yīng)性測試備考題庫有答案解析
- 追求卓越培訓課件
- 2026年吉林水利電力職業(yè)學院單招綜合素質(zhì)筆試參考題庫帶答案解析
- 2026貴州黔南州長順縣醫(yī)療集團中心醫(yī)院招聘備案編制人員21人筆試參考題庫及答案解析
- 中國兒童原發(fā)性免疫性血小板減少癥診斷與治療改編指南(2025版)
- 2026年遼寧生態(tài)工程職業(yè)學院單招綜合素質(zhì)考試題庫附答案詳解
- 基坑回填質(zhì)量控制措施
- 2025重慶城口縣國有企業(yè)公開招聘26人參考題庫附答案
- 應(yīng)力性骨折課件
- 醫(yī)?;鸨O(jiān)管培訓課件
- 新型醫(yī)療器械應(yīng)用評估報告
- 2023心力衰竭器械治療進展
- 2025年大學《應(yīng)急裝備技術(shù)與工程-應(yīng)急裝備概論》考試備考試題及答案解析
- 2025年國家開放大學(電大)《護理倫理學》期末考試復習題庫及答案解析
評論
0/150
提交評論