四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁(yè)
四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁(yè)
四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁(yè)
四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁(yè)
四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省宜賓市2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,,()A. B.C. D.2.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.3.已知在一次降雨過(guò)程中,某地降雨量(單位:mm)與時(shí)間t(單位:min)的函數(shù)關(guān)系可表示為,則在時(shí)的瞬時(shí)降雨強(qiáng)度為()mm/min.A. B.C.20 D.4004.已知為等比數(shù)列的前n項(xiàng)和,,,則()A.30 B.C. D.30或5.展開(kāi)式的第項(xiàng)為()A. B.C. D.6.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.7.直線分別交坐標(biāo)軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),三角形OAB的內(nèi)切圓上有動(dòng)點(diǎn)P,則的最小值為()A.16 B.18C.20 D.228.已知點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓9.函數(shù)在區(qū)間上的最小值是()A. B.C. D.10.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則()A. B.C. D.11.直線的傾斜角為()A B.C. D.12.已知兩個(gè)向量,,且,則的值為()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.瑞士著名數(shù)學(xué)家歐拉在1765年證明了定理:三角形的外心、重心、垂心位于同一條直線上,這條直線被后人稱(chēng)為三角形的“歐拉線”.已知平面直角坐標(biāo)系中各頂點(diǎn)的坐標(biāo)分別為,,,則其“歐拉線”的方程為_(kāi)__________.14.已知數(shù)列前n項(xiàng)和為,且.(1)證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)在①;②;③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面橫線上,并加以解答.已知數(shù)列滿(mǎn)足___________,求的前n項(xiàng)和.注:如果選擇多個(gè)方案分別解答,按第一個(gè)方案解答計(jì)分.15.已知向量與是平面的兩個(gè)法向量,則__________16.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為_(kāi)___________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,且過(guò)點(diǎn).(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點(diǎn),過(guò)點(diǎn)且斜率為的直線交橢圓于另一點(diǎn)(異于橢圓的右頂點(diǎn)),交軸于點(diǎn),直線與直線相交于點(diǎn).求證:直線的斜率為定值.18.(12分)如圖,四棱錐中,底面ABCD是邊長(zhǎng)為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大小;(3)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)a=1時(shí),對(duì)于任意的,,都有恒成立,則m的取值范圍.20.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個(gè)不同點(diǎn)P、Q滿(mǎn)足,證明:直線PQ過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).21.(12分)已知數(shù)列滿(mǎn)足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和22.(10分)圓的圓心為,且與直線相切,求:(1)求圓的方程;(2)過(guò)的直線與圓交于,兩點(diǎn),如果,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C2、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因?yàn)橹本€的傾斜角為45°,所以直線的斜率為,因?yàn)橹本€在軸上的截距是,所以所求的直線方程為,即,故選:B3、B【解析】對(duì)題設(shè)函數(shù)求導(dǎo),再求時(shí)對(duì)應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時(shí)的瞬時(shí)降雨強(qiáng)度為mm/min.故選:B4、A【解析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A5、B【解析】由展開(kāi)式的通項(xiàng)公式求解即可【詳解】因?yàn)椋哉归_(kāi)式的第項(xiàng)為,故選:B6、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A7、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標(biāo),設(shè),則,由表示內(nèi)切圓上的動(dòng)點(diǎn)P到定點(diǎn)的距離的平方,從而即可求解最小值.【詳解】解:因?yàn)橹本€分別交坐標(biāo)軸于A,B兩點(diǎn),所以設(shè),則,因?yàn)?,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以?xún)?nèi)切圓的方程為,設(shè),則,因?yàn)楸硎緝?nèi)切圓上的動(dòng)點(diǎn)P到定點(diǎn)的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.8、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.9、B【解析】求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,得極值,并求出端點(diǎn)處函數(shù)值比較后可得最小值【詳解】解:因?yàn)椋谑呛瘮?shù)在上單調(diào)遞增,在上單調(diào)遞減,,,得函數(shù)在區(qū)間上的最小值是故選:B10、A【解析】先化簡(jiǎn)函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到的圖象.故選:A11、C【解析】設(shè)直線傾斜角為,則,再結(jié)合直線的斜率與傾斜角的關(guān)系求解即可.【詳解】設(shè)直線的傾斜角為,則,∵,所以.故選:C12、C【解析】由,可知,使,利用向量的數(shù)乘運(yùn)算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點(diǎn)睛】思路點(diǎn)睛:在解決有關(guān)平行的問(wèn)題時(shí),通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉(zhuǎn)化為方程組求解;本題也可以利用坐標(biāo)成比例求解,即由,得,求出m,n.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意知是直角三角形,即可寫(xiě)出垂心、外心的坐標(biāo),進(jìn)而可得“歐拉線”的方程.【詳解】由題設(shè)知:是直角三角形,則垂心為直角頂點(diǎn),外心為斜邊的中點(diǎn),∴“歐拉線”的方程為.故答案為:.14、(1)證明見(jiàn)解析,;(2)答案見(jiàn)解析.【解析】(1)利用得出的遞推關(guān)系,變形后可證明是等比數(shù)列,由等比數(shù)列通項(xiàng)公式得,然后再除以得到新數(shù)列是等差數(shù)列,從而可求得;(2)選①,直接求出,用錯(cuò)位相減法求和;選②,求出,用分組(并項(xiàng))求和法求和;選③,求出,用裂項(xiàng)相消法求和【詳解】解:(1)當(dāng)時(shí),因?yàn)椋?,兩式相減得,.所以.當(dāng)時(shí),因?yàn)?,所以,又,故,于是,所以是?為首項(xiàng)2為公比的等比數(shù)列.所以,兩邊除以得,.又,所以是以2為首項(xiàng)1為公差的等差數(shù)列.所以,即.(2)若選①:,即.因?yàn)?,所?兩式相減得,所以.若選②:,即.所以.若選③:,即.所以.【點(diǎn)睛】本題考查求等差數(shù)列、等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法求和.?dāng)?shù)列求和的常用方法:設(shè)數(shù)列是等差數(shù)列,是等比數(shù)列,(1)公式法:等差數(shù)列或等比數(shù)列的求和直接應(yīng)用公式求和;(2)錯(cuò)位相減法:數(shù)列的前項(xiàng)和應(yīng)用錯(cuò)位相減法;(3)裂項(xiàng)相消法;數(shù)列(為常數(shù),)的前項(xiàng)和用裂項(xiàng)相消法;(4)分組(并項(xiàng))求和法:數(shù)列用分組求和法,如果數(shù)列中的項(xiàng)出現(xiàn)正負(fù)相間等特征時(shí)可能用并項(xiàng)求和法;(5)倒序相加法:滿(mǎn)足(為常數(shù))的數(shù)列,需用倒序相加法求和15、【解析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.16、【解析】過(guò)作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長(zhǎng)為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過(guò)作平面平面,因?yàn)辄c(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因?yàn)榍?,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長(zhǎng)為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時(shí),取得最小值,最小值為,當(dāng)或時(shí),取得最大值,最大值為故答案為三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)條件求出,即可寫(xiě)出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓,可表示出坐標(biāo),繼而得出直線的方程,令可得的坐標(biāo),即可求出直線的斜率并得出定值.【詳解】(1)設(shè)橢圓的焦距為,則①,②,又③,由①②③解得,,,所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:易得,,直線的方程為,因?yàn)橹本€不過(guò)點(diǎn),所以,由,得,所以,從而,,直線的斜率為,故直線的方程為.令,得,直線斜率.所以直線的斜率為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,考查橢圓中的定值問(wèn)題,屬于中檔題.18、(1)證明見(jiàn)解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行求解.【小問(wèn)1詳解】證明:連接BD,設(shè)BD與AC交于點(diǎn)O,連接PO.因?yàn)?,所以四棱錐中,底面ABCD是邊長(zhǎng)為2的菱形,則又,所以平面PBD,因?yàn)槠矫鍼BD,所以【小問(wèn)2詳解】因?yàn)?,所以,所以由?)知平面ABCD,以O(shè)為原點(diǎn),,,的方向?yàn)閤軸,y軸,z軸正方向,建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問(wèn)3詳解】存在點(diǎn)F到平面AEC的距離為,理由如下:由(2)得,,設(shè),則,所以點(diǎn)F到平面AEC的距離,解得,,所以19、(1)答案見(jiàn)解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類(lèi)討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問(wèn)1詳解】由題可得的定義域?yàn)?,若,恒有,?dāng)時(shí),,當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當(dāng)時(shí),;當(dāng)時(shí),,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當(dāng)時(shí),;當(dāng)時(shí),,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在上單調(diào)遞增,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減;【小問(wèn)2詳解】由(1)知,時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)a=1時(shí),,,,∴.又,,∴.由題意得,,∴.20、(1);(2)證明見(jiàn)解析,.【解析】(1)由題可得,即求;(2)設(shè)直線PQ的方程為,聯(lián)立橢圓方程,利用韋達(dá)定理法可得,即得.【小問(wèn)1詳解】由題可設(shè)橢圓的方程為,則,∴,∴橢圓的方程為;【小問(wèn)2詳解】當(dāng)直線PQ的斜率存在時(shí),可設(shè)直線PQ的方程為,設(shè),由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直線PQ的方程為過(guò)定點(diǎn);當(dāng)直線PQ的斜率不存在時(shí),不合題意.故直線PQ過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.21、(1)證明見(jiàn)解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問(wèn)1詳解】解:數(shù)列滿(mǎn)足

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論