版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省武勝烈面中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件2.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,3.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.已知向量a→=(1,1,k),A. B.C. D.6.若命題“對任意,使得成立”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.7.設(shè)雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.8.若,則下列結(jié)論不正確的是()A. B.C. D.9.某學(xué)校的校車在早上6:30,6:45,7:00到達某站點,小明在早上6:40至7:10之間到達站點,且到達的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.10.函數(shù)的圖象大致為()A B.C D.11.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.12.已知直線,,若,則實數(shù)的值是()A.0 B.2或-1C.0或-3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則_______14.橢圓與雙曲線有公共焦點,設(shè)橢圓與雙曲線在第一象限內(nèi)交于點,橢圓與雙曲線的離心率分別為為坐標原點,,則的取值范圍是___________.15.經(jīng)過、兩點的直線斜率為______.16.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設(shè)直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程18.(12分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當(dāng)軸時,,(1)求橢圓C的標準方程;(2)記,求實數(shù)m的最大值19.(12分)已知拋物線的方程為,點,過點的直線交拋物線于兩點(1)求△OAB面積的最小值(為坐標原點);(2)是否為定值?若是,求出該定值;若不是,說明理由20.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設(shè)與交于點,求證:三點共線.21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:22.(10分)已知拋物線的焦點,點在拋物線上.(1)求;(2)過點向軸作垂線,垂足為,過點的直線與拋物線交于兩點,證明:為直角三角形(為坐標原點).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C2、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.3、B【解析】因但4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.5、D【解析】根據(jù)向量的坐標運算和向量垂直數(shù)量積為0可解.【詳解】解:根據(jù)題意,易得a→∵與兩向量互相垂直,∴0+2+k+2=0,解得.故選:D6、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當(dāng)且僅當(dāng)時等號成立)所以故選:A7、A【解析】由給定條件寫出點A,F(xiàn)坐標,設(shè)出點B的坐標,求出線段FC的中點坐標,由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設(shè),由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A8、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當(dāng)且僅當(dāng)時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.9、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B10、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時,,可得選項為A故選:A11、C【解析】設(shè)出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設(shè)圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.12、C【解析】由,結(jié)合兩直線一般式有列方程求解即可.【詳解】由知:,解得:或故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先對函數(shù)求導(dǎo),然后令可求出的值【詳解】因為,所以,則,解得故答案為:14、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設(shè),則有,所以,即,又因為,所以,所以,即,則,由,得,所以,所以,則,由,得,因為,當(dāng)且僅當(dāng),即時,取等號,因為,所以,所以,即,所以的取值范圍是.故答案為:.15、【解析】利用斜率公式可求得結(jié)果.【詳解】由斜率公式可知,直線的斜率為.故答案為:.16、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結(jié)果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設(shè)點,則,不妨設(shè)點為直線上的點,則,,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)理由見解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關(guān)系,再求出原點O到直線l的距離即可推理作答.【小問1詳解】因,則,點在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標準方程是:.【小問2詳解】由消去y并整理得:,依題意,,設(shè),,因,則,于是得,此時,,則原點O到直線l的距離,所以,存在以原點O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點睛】思路點睛:涉及動直線與圓錐曲線相交滿足某個條件問題,可設(shè)直線方程為,再與圓錐曲線方程聯(lián)立結(jié)合已知條件探求k,m的關(guān)系,然后推理求解.18、(1)(2)【解析】(1)利用橢圓的定義及勾股定理可求解;(2)問題轉(zhuǎn)化為在軸截距的問題,臨界條件為直線與橢圓相切,求解即可.【小問1詳解】因為,,所以,∴,所以橢圓標準方程為:【小問2詳解】要求的最值,即求直線在軸截距的最值,可知當(dāng)直線與橢圓相切時,m取得最值.聯(lián)立方程:,整理得,解得所以實數(shù)m的最大值為19、(1);(2)是,該定值.【解析】(1)根據(jù)弦長公式、點到直線距離公式,結(jié)合三角形面積公式進行求解即可;(2)根據(jù)兩點間距離公式,結(jié)合一元二次方程根與系數(shù)的關(guān)系進行求解即可.【小問1詳解】顯然直線存在斜率,設(shè)直線的方程為:,所以有,設(shè),則有,,原點到直線的距離為:,△OAB的面積為:,當(dāng)時,有最小值,最小值為;【小問2詳解】是定值,理由如下:由(1)可知:,,【點睛】關(guān)鍵點睛:利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.20、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結(jié)論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.21、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P到直線的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年聊城市茌平區(qū)衛(wèi)生類事業(yè)單位公開招聘工作人員備考題庫有答案詳解
- 2026年華電甘肅能源有限公司所屬基層企業(yè)面向華電系統(tǒng)內(nèi)外公開招聘的備考題庫完整答案詳解
- 2026年中鼎國際建設(shè)集團有限責(zé)任公司面向社會公開招聘備考題庫附答案詳解
- 2026年北京積水潭醫(yī)院貴州醫(yī)院簡化考試程序招聘博士配偶工作人員備考題庫附答案詳解
- 2026年扎囊縣教育(體育)局招聘財務(wù)工作人員備考題庫完整參考答案詳解
- 2026年京學(xué)貴陽附屬實驗學(xué)校招聘備考題庫及參考答案詳解
- 2026年寧波市海曙區(qū)鄞江鎮(zhèn)中心衛(wèi)生院招聘編外校醫(yī)備考題庫及1套參考答案詳解
- 2026年山西新聞網(wǎng)忻州頻道招聘備考題庫及完整答案詳解1套
- 2026屆江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)生物高一上期末聯(lián)考模擬試題含解析
- 內(nèi)蒙古自治區(qū)五原縣第一中學(xué)2026屆高一上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 君山島年度營銷規(guī)劃
- 2025年山東師范大學(xué)馬克思主義基本原理概論期末考試參考題庫
- 期末測試卷(試卷)2025-2026學(xué)年三年級數(shù)學(xué)上冊(人教版)
- DB32T 5132.3-2025 重點人群職業(yè)健康保護行動指南 第3部分:醫(yī)療衛(wèi)生人員
- 2025秋中國南水北調(diào)集團新能源投資有限公司校園招聘(25人)(公共基礎(chǔ)知識)測試題帶答案解析
- 2025至2030中國X射線衍射儀(XRD)行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 核電廠抗震設(shè)計標準
- 2026年經(jīng)銷商合同
- 2023-2025年中考英語真題匯編01之單項選擇(時態(tài)和語態(tài))
- 學(xué)堂在線 雨課堂 學(xué)堂云 科研倫理與學(xué)術(shù)規(guī)范 章節(jié)測試答案
- 腹腔粘液性腫瘤課件
評論
0/150
提交評論