陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題含解析_第1頁
陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題含解析_第2頁
陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題含解析_第3頁
陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題含解析_第4頁
陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西咸陽市2026屆高二數(shù)學第一學期期末調研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設正方體的棱長為,則點到平面的距離是()A. B.C. D.2.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.23.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.74.拋物線的準線方程為()A. B.C. D.5.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.846.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.7.已知空間四邊形中,,,,點在上,且,為中點,則等于()A. B.C. D.8.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°9.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內,并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.10.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當最大時,()A. B.1C. D.211.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為12.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的導函數(shù)___________.14.已知圓和直線.(1)求直線l所經(jīng)過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.15.已知橢圓和雙曲線有相同的焦點和,設橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標原點).若,則的取值范圍是______16.直線的傾斜角的大小是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標.18.(12分)設或,(1)若時,p是q的什么條件?(2)若p是q的必要不充分條件,求a的取值范圍19.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(1)求證:平面;(2)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由20.(12分)設函數(shù)(Ⅰ)求的單調區(qū)間;(Ⅱ)若,為整數(shù),且當時,恒成立,求的最大值.(其中為的導函數(shù).)21.(12分)已知橢圓C:的離心率為,點為橢圓C上一點(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個動點,且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值22.(10分)二項式展開式中第五項的二項式系數(shù)是第三項系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】建立空間直角坐標系,根據(jù)空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.2、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質.考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題3、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.4、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.5、D【解析】設等比數(shù)列公比為q,根據(jù)給定條件求出即可計算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D6、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎題.7、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B8、A【解析】按照斜率公式計算斜率,即可求得傾斜角.【詳解】由題意直線過,設直線斜率為,傾斜角為,則,故.故選:A.9、C【解析】設這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結果.【詳解】設這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.10、B【解析】根據(jù)拋物線的定義,結合換元法、配方法進行求解即可.【詳解】因為點P為該拋物線上的動點,所以點P的坐標設為,拋物線的焦點為F,所以,拋物線的準線方程為:,因此,令,,當時,即當時,有最大值,最大值為1,此時.故選:B11、C【解析】讀懂莖葉圖,分別計算出眾數(shù)、中位數(shù)、方差,然后對各選項進行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【點睛】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計算出眾數(shù)、中位數(shù)、方差,即可對各選項進行判斷,較為基礎12、B【解析】設出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關系即可求解.【詳解】以O為原點,AD所在直線為x軸建系,不妨設,則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎題目二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導函數(shù)的乘法公式和復合函數(shù)求導法則進行求解【詳解】故答案為:14、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.15、【解析】設出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關系即可計算作答,【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側,由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.16、【解析】由題意,即,∴考點:直線的傾斜角.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設出圓心坐標,再結合點到直線距離公式計算作答.(2)設點,求出圓的方程,結合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設點,,設動圓上任意一點當與點P,M都不重合時,,有,當與點P,M之一重合時,對應為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式18、(1)充要條件;(2).【解析】(1)根據(jù)解一元二次不等式的方法,結合充分性、必要性的定義進行求解判斷即可;(2)根據(jù)必要不充分條件的性質進行求解即可.【小問1詳解】因為,所以,解得或,顯然p是q的充要條件;【小問2詳解】,當時,該不等式的解集為全體實數(shù)集,顯然由,但不成立,因此p是q的充分不必要條件,不符合題意;當時,該不等式的解集為:,顯然當時,不一定成立,因此p不是q的必要不充分條件,當時,該不等式解集為:,要想p是q的必要不充分條件,只需,而,所以,因此a的取值范圍為:.19、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設,求出,結合已知條件可列出關于的方程,從而可求出的值.【詳解】證明:過作于點,則,以為原點,,,所在的直線分別為,,軸建立如圖所示的空間直角坐標系則,,,

,,,∵為的中點.∴.則,,,設平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設,∴.∴,∴

.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,即,∵,∴,故【點睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.20、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域為,當時,對于恒成立,此時函數(shù)在上單調遞增;當時,由可得;由可得;此時在上單調遞減,在上單調遞增;綜上所述:當時,函數(shù)的單調遞增區(qū)間為,當時,單調遞減區(qū)間為,單調遞增區(qū)間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調遞增,因為,,所以在上存在唯一零點,即,可得:,當時,,則,當時,,則,所以在上單調遞減,在上單調遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導數(shù)研究函數(shù)單調性的方法:(1)確定函數(shù)的定義域;求導函數(shù),由(或)解出相應的的范圍,對應的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個子區(qū)間,在這些子區(qū)間上討論的正負,由符號確定在子區(qū)間上的單調性.21、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結合代入法進行求解即可;(2)根據(jù)角平分線的性質,結合一元二次方程根與系數(shù)關系、斜率公式進行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點,解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關于直線對稱.設直線MP的斜率為k,則直線NP的斜率為∴設直線MP的方程為,直線NP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論