湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省華師一附中、黃岡中學(xué)等八校2026屆高二上數(shù)學(xué)期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.2.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.3.已知拋物線,則它的焦點坐標(biāo)為()A. B.C. D.4.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B.0C.6 D.85.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.6.一輛汽車做直線運動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.37.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.8.已知圓與圓沒有公共點,則實數(shù)a的取值范圍為()A. B.C. D.9.函數(shù),則不等式的解集是()A. B.C. D.10.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.311.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.12.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.空間四邊形中,,,,,,,則與所成角的余弦值等于___________14.已知長方體的棱,則異面直線與所成角的大小是________________.(結(jié)果用反三角函數(shù)值表示)15.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.16.給定點、、與點,求點到平面的距離______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的兩個焦點為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標(biāo)原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程18.(12分)如圖,已知四邊形中,,,,且,求四邊形的面積19.(12分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.21.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.22.(10分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設(shè)面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】代入計算即可.【詳解】設(shè)B點的坐標(biāo)為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D2、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.3、D【解析】將拋物線方程化標(biāo)準(zhǔn)形式后得到焦準(zhǔn)距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點坐標(biāo)為.故選:D.【點睛】關(guān)鍵點點睛:將拋物線方程化為標(biāo)準(zhǔn)形式是解題關(guān)鍵.4、C【解析】畫出可行域,利用幾何意義求出目標(biāo)函數(shù)最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當(dāng)目標(biāo)函數(shù)經(jīng)過點時,目標(biāo)函數(shù)取得最大值.故選:C5、A【解析】先求得點坐標(biāo),然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A6、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.7、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.8、B【解析】求出圓、的圓心和半徑,再由兩圓沒有公共點列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒有公共點,則有或,即或,又,解得或,所以實數(shù)a的取值范圍為.故選:B9、A【解析】利用導(dǎo)數(shù)判斷函數(shù)單調(diào)遞增,然后進行求解.【詳解】對函數(shù)進行求導(dǎo):,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A10、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進而求得離心率【詳解】根據(jù)題意得到設(shè),因為,所以,所以,則故選:C.11、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:12、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.14、【解析】建立空間直角坐標(biāo)系,求出異面直線與的方向向量,再求出兩向量的夾角,進而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標(biāo)系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:15、【解析】根據(jù)題意可得,利用推出,進而得出結(jié)果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:16、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設(shè)平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)雙曲線方程為(2)滿足條件的直線l有兩條,其方程分別為y=和【解析】(1)由雙曲線焦點可得值,進而可得到的關(guān)系式,將點P代入雙曲線可得到的關(guān)系式,解方程組可求得值,從而確定雙曲線方程;(2)求直線方程采用待定系數(shù)法,首先設(shè)出方程的點斜式,與雙曲線聯(lián)立,求得相交的弦長和O到直線的距離,代入面積公式可得到直線的斜率,求得直線方程試題解析:(1)由已知及點在雙曲線上得解得;所以,雙曲線的方程為(2)由題意直線的斜率存在,故設(shè)直線的方程為由得設(shè)直線與雙曲線交于、,則、是上方程的兩不等實根,且即且①這時,又即所以即又適合①式所以,直線的方程為與18、.【解析】在中由余弦定理可得,在中,由余弦定理可得,再利用四邊形的面積,結(jié)合三角形面積公式可得答案.【詳解】在中,由,,,可得在中,由,,,可得又,故.所以四邊形的面積=【點睛】本題主要考查余弦定理解三角形,考查了三角形面積公式的應(yīng)用,屬于中檔題.19、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數(shù)等于0消去參數(shù)即可求得定點坐標(biāo).(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯(lián)立得:即直線l過定點(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為.20、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點,設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問1詳解】證明:,,為的中點,則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點,.平面平面,且平面平面,平面,平面.如圖,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設(shè)存在點,設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點,且點在線段上位于靠近點的四等分點處.21、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標(biāo)原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因為為的中點,所以.所以,.設(shè)平面的一個法向量為,由得.令,得,,所以.設(shè)平面的一個法向量為.因為,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.22、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結(jié)論,(2)由已知條件可證得兩兩垂直,所以以為原點,所在的直線分別為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論