多模態(tài)人工智能為腫瘤微環(huán)境建模生成虛擬群體 Multimodal AI generates virtual population for tumor microenvironment modeling_第1頁
多模態(tài)人工智能為腫瘤微環(huán)境建模生成虛擬群體 Multimodal AI generates virtual population for tumor microenvironment modeling_第2頁
多模態(tài)人工智能為腫瘤微環(huán)境建模生成虛擬群體 Multimodal AI generates virtual population for tumor microenvironment modeling_第3頁
多模態(tài)人工智能為腫瘤微環(huán)境建模生成虛擬群體 Multimodal AI generates virtual population for tumor microenvironment modeling_第4頁
多模態(tài)人工智能為腫瘤微環(huán)境建模生成虛擬群體 Multimodal AI generates virtual population for tumor microenvironment modeling_第5頁
已閱讀5頁,還剩50頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

cel

Article

MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling

Graphicalabstract

virtualmF

GigaTMEtranslatesH&EimagesintomFimagesacross21proteinchannels

CD8PD-1

TryptasePHH3

CD16CD14CD138

Transgelin

CD11CActin

CD20CD34

caspase3

T-betCK

DAPICD68CD3PD-L1

ki67

CD4

virtualpopulation

H&Eimagespopulation-scaleReal-worldEvidence

>

>

Months

LongitudinalAnalysis

306cancersubtypes

BiomarkerDiscovery

14,256patients,from51hospitals

Highlights

Authors

JeyaMariaJoseValanarasu,HanwenXu,NaotoUsuyama,...,CarloBifulco,

ShengWang,HoifungPoon

Correspondence

carlo.bifulco@

(C.B.),

swang@

(S.W.),

hoifung@

(H.P.)

Inbrief

GigaTIMEleveragesmultimodalAIto

generatevirtualmultiplex

immunoluorescence(mIF)profilesfromstandardH&Eslides,enabling

comprehensivetumorimmune

microenvironmentmodelingacrossa

large(>14,000)anddiversepatient

population.Thisvirtualapproachunlocksnewopportunitiesforlarge-scaleclinicaldiscoveriesthatwerepreviouslyhinderedbythescarcityofmIFdata.

?GigaTIMEusesmultimodalAItotranslateH&Epathologyslidestospatialproteomics

?GigaTIMEgeneratesavirtualpopulationwithcellstatesfromroutineH&Eslides

?Virtualpopulationenableslarge-scaleclinicaldiscoveryandpatientstratification

?Virtualpopulationrevealsnewspatialandcombinatorialproteinactivationpatterns

Valanarasuetal.,2026,Cell189,1–15

January22,2026?2025TheAuthor(s).PublishedbyElsevierInc.

/10.1016/j.cell.2025.11.016

cellress

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

cel

cellress

OPENACCESS

Article

MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling

JeyaMariaJoseValanarasu,

1,

7

HanwenXu,

1,

2,

7

NaotoUsuyama,

1,

7

Chanwoo

Kim,1,

2,

7

CliffWong,

1

PenielArgaw,

1

RacheliBenShimol,

4

AngelaCrabtree,

4

KevinMatlock,

4

AlexandraQ.Bartlett,

4

JaspreetBagga,

1

YuGu,

1

ShengZhang,

1

TristanNaumann,

1

BernardA.Fox,

4

BillWright,

5

AriRobicsek,

5,

6

BrianPiening,

3,

4

CarloBifulco,

3,

4,

8,

*

ShengWang,

1,

2,

8,

*

andHoifungPoon

1,

8,

9,

*

1MicrosoftResearch,Redmond,WA,USA

2SchoolofComputerScienceandEngineering,UniversityofWashington,Seattle,WA,USA

3ProvidenceGenomics,Portland,OR,USA

4EarleA.ChilesResearchInstitute,ProvidenceCancerInstitute,Portland,OR,USA

5ProvidenceResearchNetwork,Renton,WA,USA

6ArclightIntelligence,Newton,MA,USA

7Theseauthorscontributedequally

8Seniorauthor

9Leadcontact

*Correspondence:

carlo.bifulco@

(C.B.),

swang@

(S.W.),

hoifung@

(H.P.)

/10.1016/j.cell.2025.11.016

SUMMARY

Thetumorimmunemicroenvironment(TIME)criticallyimpactscancerprogressionandimmunotherapyresponse.Multipleximmunoluorescence(mIF)isapowerfulimagingmodalityfordecipheringTIME,butitsapplicabilityislimitedbyhighcostandlowthroughput.WeproposeGigaTIME,amultimodalAIframeworkforpopulation-scaleTIMEmodelingbybridgingcellmorphologyandstates.GigaTIMElearnsacross-modaltranslatortogeneratevirtualmIFimagesfromhematoxylinandeosin(H&E)slidesbytrainingon40millioncellswithpairedH&EandmIFdataacross21proteins.WeappliedGigaTIMEto14,256patientsfrom51hos-pitalsandover1,000clinicsacrosssevenUSstatesinProvidenceHealth,generating299,376virtualmIFslidesspanning24cancertypesand306subtypes.Thisvirtualpopulationuncovered1,234statisticallysig-nificantassociationslinkingproteins,biomarkers,staging,andsurvival.Suchanalyseswerepreviouslyinfea-sibleduetothescarcityofmIFdata.Independentvalidationon10,200TCGApatientsfurthercorroboratedourfindings.

INTRODUCTION

Thetumorimmunemicroenvironment(TIME)playsacriticalroleincancerprogression,inluencingtumorgrowth,invasion,metastasis,andresponsetocancertherapiesbyaffectingtumorimmunesurveillanceandevasion.

1–3

TheTIMEisahighlycom-plexspatialecosystemconsistingofcancercells,anddiversenon-malignantcelltypes,includingimmunecells,cancer-asso-ciatedfibroblasts(CAFs),endothelialcells(ECs),pericytes,andothercelltypes,embeddedinanalteredextracellularmatrix.

4

Immunohistochemistry(IHC)visualizestheactivationofaspe-cificprotein,whichoffersanimportanttoolforunveilingkeycellstatesinTIMEstudy.Forexample,PD-L1IHCstainingiden-tifiestheactivationofthesuppressivetumorimmunecheckpointPD-L1,whichisawidelyusedpredictorforresponsetocheck-pointinhibitortherapies.AcriticallimitationofIHCisthattheac-tivationsareevaluatedoneproteinatatime,eachonaseparatetissuesample.Thisshortcomingisparticularlyproblematicfortumormicroenvironmentmodeling,wherethestudyofthecom-

plexinterplayamongtumorandimmunecellsrequiresthesimul-taneousevaluationofavarietyofproteins.Multipleximmunolu-orescence(mIF)hasemergedasapowerfulalternative,enablingco-localized,multi-channelproteinprofilingonthesametissuewhilepreservingthespatialarchitecture.

5–8

Despitethepromise,mIFremainsconsiderablyexpensiveforlarge-scalestudy,duetothesubstantialcostsofreagents,specializedequipment,andcomputationalinfrastructure,com-binedwiththelabor-intensiveworklowsforstaining,imaging,anddataprocessing.

8

,9

Consequently,existingmIFdatasetsareextremelyscarce,whichsignificantlylimittheirapplicabilityinclinicaldiscoveryandtranslation.Bycontrast,hematoxylinandeosin(H&E)imagesareroutinelygeneratedinclinicalwork-lowsatlowcostforstudyingtissuestructureandcellmorphology.

10

,

11

WhileanH&Eimagedoesnotexplicitlyrevealcellstates,thespatialconfigurationofcellsitrevealscanshedlightontheirindividualstates.Suchpatternsmightnotbeobviousforhumanexpertsbutarepotentiallydiscernibleusingadvancedmultimodal

AI.12–16

Recentadvancesinfoundation

Cell189,1–15,January22,2026?2025TheAuthor(s).PublishedbyElsevierInc.1ThisisanopenaccessarticleundertheCCBYlicense(

/licenses/by/4.0/

).

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

eacellress

OPENACCESS

cel

Article

modelsfurtheramplifythispotential,asAIhasdemonstratedsu-periorperformancebypretrainingfromalargecollectionofpa-thologyimages.

17–19

SuchadvancesinAIsuggesttheplausibilityoflearningpathologicalfeaturesindicativeofspatiallyresolvedproteinactivations.

Inthispaper,weproposeGigaTIME,amultimodalAIframe-workthatenablespopulation-scaleTIMEstudybylearningtogeneratevirtualmIFimagesfromreadilyavailableH&Eimages.GigaTIME’scross-modaltranslatorwaspretrainedusing40millioncellswithpairedH&EandmIFslidesforthesametis-sues.WeappliedGigaTIMEtogeneratevirtualmIFimagesforcancerpatientsfrom51hospitalsandoverathousandclinicsacrosssevenUSstatesatProvidenceHealth,yielding299,376virtualmIFwhole-slideimagesacross21proteinchan-nels.Thisenabledustocreatealargeanddiversevirtualpop-ulationof14,256patientsacross24cancertypesand306can-cersubtypes,withvirtualmIFslidesandkeyclinicalattributessuchasbiomarkers,staging,andsurvivalinformation.Inturn,thisenablesustoconductpopulation-scaleclinicaldiscovery,identifying181,453,and600statisticallysignificantTIMEpro-tein-biomarkerassociationsatthepan-cancer,cancer-type,andsubtypelevels,respectively,alladjustedformultipletesting,formingacomprehensiveprotein-biomarkerassocia-tioncollectionforTIME.Thevirtualpopulationalsoenabledpa-tientstratificationpredictiveofstagingandsurvival,withtheGigaTIMEsignatureintegratingallvirtualproteinactivationsoutperformingindividualvirtualproteinsinpatientstratification,underscoringtheimportanceofmultiplexedanalysis.Wedemonstratedhowavirtualpopulationcansupportspatiallyinformedmetrics,suchassharpnessandentropy.Wefurtheridentifiedcombinatorialproteinchannelsthatrevealedsyner-gisticassociations.Forexample,ourGigaTIMEanalysisfoundthatthecombinationofCD138andCD68outperformeachpro-teinaloneinpredictingallrepresentativeclinicalbiomarkers,withstatisticallysignificantdifferencefor13outof20bio-markers,suggestingtheircombinedroleinantibody-mediatedtumormechanisms.

ToevaluateGigaTIME’sgeneralizability,weappliedittogenerateanindependentvirtualpopulationof10,200tumorsfromtheCancerGenomeAtlas(TCGA).Weobservesignifi-cantconcordanceacrossthevirtualpopulationsfromProvi-denceandTCGA,whichattainedaSpearmancorrelationof0.88forvirtualproteinactivationsacrosscancersubtypes.ThetwopopulationsalsouncoverasignificantoverlapofTIMEprotein-biomarkerassociations(Fisher’sexacttest;p<2×10?9).Ontheotherhand,theProvidencevirtualpop-ulationyielded33%moresignificantassociationsthanTCGA,highlightingthevalueoflargeanddiversereal-worlddataforclinicaldiscovery.

GigaTIMEoffersapromisingAIframeworkforscalingtumormicroenvironmentmodelingbylearningtotranslatereadilyavail-ableH&EimagesintohighlyinformativevirtualmIFimages,thuspavingthewayforadvancingprecisionimmuno-oncologythroughpopulation-scaleTIMEanalysisanddiscovery.Tofacil-itatefutureresearchintumormicroenvironmentmodeling,wewillreleaseourpretrainedGigaTIMEmodel,aswellasourin-housedatasetof40millioncellsfromde-identifiedpairedH&EandmIFslidesacross21proteinchannels.

Table1.TIMEmarkersusedinourstudyandtheircellular

expression

TIMEmarker

Typicalcellularexpression

CD4

Thelper

CD138

Plasmacells

CD68

Macrophages

CD14

Monocytes

Tryptase

Mastcell

Caspase3

Cellsundergoingapoptosis

PHH3

Mitoticspindle

Ki67

Proliferatingcells(normalandtumor)

T-bet

NKcells,Tcells(CD3+,ofCD4+orCD8+lineages)

Transgelin

Fibroblasts;smoothmuscle

CD3

AllTcells

CK

Epithelialcelllineage

Actin

Myofibroblast

DAPI

Nuclearmarker

CD8

CytotoxicTcells

CD20

Bcells

CD16

CD16a:NKcells;CD16b:neutrophils¯ophages

CD34

Vascularmarker(alsoHematopoieticprecursors,capillaryendothelium)

PD-1

Tcells,Bcells

PD-L1

Antigenpresentingcells(APCs),tumorcells,vascularendothelium

CD11c

Dendriticcells(antigenpresenting)

Tablelistingalltumorimmunemicroenvironment(TIME)markersincludedinouranalysis,alongwiththeirpredominantcellularlocalizationandbiologicalfunction.

RESULTS

GigaTIMEgeneratesavirtualpopulationofmultipleximmunoluorescence

GigaTIMEenablesthegenerationofalargeanddiversevirtualpopulationofmIFimagesfrompopulation-scaleH&Eslides.Wefirstexperimentallyacquired441mIFimagesfrom21H&E-stainedslidesacross21proteinchannels(see

STARMethods

;FigureS1;

Table1

).ThesepairedH&EandmIFslideswereprocessedthroughacomputationalpipelinethatincludesimageregistrationandcellsegmentation,resultinginadatasetcomprising40millioncellswithpairedH&EandmIFslides(

Figures1

Aand

S2

).

Wedividedthepaireddataintotraining,development,andheld-outtestsets(see

STARMethods

).TotranslateH&EimagesintomIFones,GigaTIMEwastrainedonthetrainingpaireddatausingapatch-basedencoder-decoderarchitecturebuiltonNes-tedUNet.

20

ThemodelinputsanH&Eimagepatchandoutputs21correspondingmIFpatches,oneforeachproteinchannel.Thesechannel-specificpatchesaresubsequentlystitchedtogethertoreconstructthewhole-slidemIFimages,enablingspatiallyresolved,slide-levelproteinactivationprofiling.

2Cell189,1–15,January22,2026

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

Article

ll

OPENACCESS

C

A

B

Figure1.GigaTIMEenablespopulation-scaletumorimmunemicroenvironmentanalysis

(A)GigaTIMEinputsahematoxylinandeosin(H&E)whole-slideimageandoutputsmultipleximmunoluorescence(mIF)across21proteinchannels.ByapplyingGigaTIMEto14,256patients,wegeneratedavirtualpopulationwithmIFinformation,leadingtopopulation-scalediscoveryonclinicalbiomarkersandpatientstratification,withindependentvalidationonTCGA.

(B)Circularplotvisualizingatumorimmunemicroenvironment(TIME)spectrumencompassingtheGigaTIME-translatedvirtualmIFactivationscoresacrossdifferentproteinchannelsatthepopulationscale,whereeachchannelisrepresentedasanindividualcircularbarchartsegment.TheinnercircleencodesOncoTree,whichclassifies14,256patientsinto306subtypesacross24cancertypes.Theoutercirclegroupstheseactivationsbycancertypes,allowingvisualcomparisonacrossmajorcategories.

(C)Scatterplotcomparingthesubtype-levelGigaTIME-translatedvirtualmIFactivationsbetweenTCGAandProvidencevirtualpopulations.Eachdotdenotestheaverageactivationscoreofaproteinchannelamongalltumorsofacancersubtype.

SeealsoFiguresS1,

S2

,

S3

,and

S4

.

Cell189,1–15,January22,20263

4Cell189,1–15,January22,2026

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

eacellress

OPENACCESS

cel

Article

Effectively,givenaproteinchannel,GigaTIMEoutputsabinaryclassificationlabelforeachpixelindicatingwhetheritisacti-vatedforthegivenproteinchannel.Wecanthentallythecountofactivatedpixels,aswellasactivationdensityscore(proportionofactivatedpixels),foranyimagepatchorwholeslide.

WethenappliedGigaTIMEtoalargeanddiversereal-worldda-tasetconsistingof14,256whole-slideH&Eimagescollectedfrom51hospitalsandover1,000clinicsacrosssevenUSstatesatProvidenceHealth,encompassing24cancertypesand306can-cersubtypes(

FigureS3

).Usingourtrainedmodel,wegenerated299,376virtualmIFwhole-slideimagesforthesepatients.Thisen-ablesustoconstructalarge-scaleanddiversemultimodalvirtualpopulationwithH&EandvirtualmIFimages,alongwithclinicalat-tributes,suchasbiomarkers,staging,andsurvivalstatus.

Asaproofofconcept,wequantifiedaproteinactivationden-sityscoreforeachmIFimage,definedastheproportionofacti-vatedpixels.Thesescoreswereaggregatedacrosstumorsofthesamesubtypeusingmeanpooling,yieldingaspectrumofmIF-basedTIMEfeaturesacrosscancersubtypes(

Figure1

B).Toevaluatetherobustnessofourapproach,wefurtherappliedGigaTIMEto10,200tumorsfromTCGA,generating214,200vir-tualmIFwhole-slideimagesacross21channels(

FigureS4

).Ahighdegreeofconcordancewasobservedbetweentheaggre-gatedactivationscoresderivedfromtheProvidence-basedandTCGA-basedvirtualpopulations(

Figure1

C),underscoringthegeneralizabilityandreliabilityofGigaTIME.

GigaTIMEtranslateswhole-slideH&EimagestomIF

WefirstevaluatedGigaTIME’sperformanceintranslatingstan-dardH&Ewhole-slideimagesintomIFimages.Tobenchmarkthistranslationtasksystematically,wecomparedGigaTIMEwithCycleGAN,

21

awidelyusedimagetranslationmodelfrequentlyappliedinvirtualstainingtasks.

22

Evaluationwascon-ductedusingthreestandardmetricsacrossdifferentlevelsofgranularity(pixel,cell,andslide)tocapturebothlocalandglobaltranslationfidelity.WealsoevaluatedanaverageactivationbaselinebyfirstcomputingtheaveragepositivityrateforeachproteinchannelinthegoldmIFdata,andthenusingthatasthesamplingprobabilitytogeneratevirtualpositivepixelsforthegivenchannel.Atthepixellevel,wetreatedthetranslationproblemasasegmentationtaskandusedtheDicescoretoeval-uatefine-grainedspatialconcordancebetweenthemeasuredmIFandGigaTIME-translatedvirtualmIF.Duringevaluation,weskippedallblankregionsatthe8×8leveltominimizepoten-tialriskforthemtoinlatethescores.

GigaTIMEsignificantlyoutperformedCycleGANon15outof21proteinchannels(nostatisticallysignificantdifferencefortheremaining6channels),highlightingtheimportanceofacquiringpairedH&E-mIFdataandlearningdirectlyfromsuchpaireddata(

Figure2

A).Wealsoobservedthattheaverageacti-vationbaselineperformedverypoorly.Forexample,thetestDicescoreforaverageactivationbaselinewasonly0.12forDAPI,comparedto0.72attainedbyGigaTIME.TheDicescoresforaverageactivationbaselineinotherproteinchannelswereevenworse.

Toassessperformanceatthecelllevel,weusedan8×8-pixelwindowandcountedthenumberofactivatedpixelsineachwin-dowforeachchannel.Pearsoncorrelationwasthencomputed

betweenpredictedandground-truthcountsacrossthewin-dows.GigaTIMEachievedsignificantlyhighercorrelationsthanCycleGAN,whichperformedclosetorandom,suggestingthatCycleGANfailstorecovercoherentcell-levelpatterns(

Figure2

B).Inparticular,GigaTIMEachievedaPearsoncorrela-tionof0.59ontheDAPIchannel,whichbindsDNAandmarksnuclei,indicatingitscapabilityinidentifyingandlocalizingindi-vidualcells.Bycontrast,CycleGANattainsaPearsoncorrelationof0.03.Theaverageactivationbaselineisevenworse,attainingzeroornegativescores(

FigureS8

).

TheseresultsverifiedthatGigaTIMEindeedlearnednon-trivialgeneralizableinformationabouttissueandproteinstructures.Forevaluatingglobalspatialpatterns,weimplementedaslide-levelmetricinspiredbyimmunoscore,

23

avalidatedscoringmethodthatwasoriginallydevelopedforcolorectalcancerandhasbeenusedinassociationstudiesofpatientoutcomesandtreatmentresponse.Weimplementedaconceptuallysimilarversionbycomputingtheratioofactivatedpixelswithineach256×256patch,andthencalculatedtheSpearmancorrelationforpatch-wiseactivationratiosbetweenthemeasuredmIFandGigaTIME-translatedvirtualmIF.Thismetricprovidesabroaderviewthatcomplementspixel-andcell-levelevaluations.Giga-TIMEachievedaSpearmancorrelationof0.98forDAPIand0.56forallchannels,whereasCycleGANyieldednear-zerocor-relationforallchannels(

Figures2

Cand

S5

),validatingthene-cessityoftrainingonpairedH&EandmIFdataforaccuratecross-modaltranslation.Finally,qualitativecomparisonsonrepresentativewhole-slideimagepatchesfurtherillustratetheagreementbetweenthemeasuredmIFandtheGigaTIME-trans-latedvirtualmIF(

Figure2

D).

TofurtherassessthegeneralizabilityofGigaTIME,wecon-ductedadditionalanalysesbasedonnewlygeneratedpaireddatatodirectlyevaluatesupervisedvirtualmIFgenerationonun-seencancertypes.Specifically,wecuratedtumorcoresfromtis-suemicroarrays(TMAs)ofbreastandbrain,whichwerenotincludedinthetrainingdata.Thesecohortsencompassawidespectrumofhistologicalsubtypesandclinicalstages.Inadditiontothedifferencesincancertypes,stages,andhistologies,thenewmIFdatacomprisemanysmall,cylindricaltissuesamplesseparatedbyblankregions,whichwerequitedifferentfromtheoriginalwholeslideswithlargecontiguoustissueregions.Despiteallthesemajordifferences,GigaTIMEhasdemonstratedremarkablegeneralizabilityinDicescoresandPearsoncorrela-tions(

FiguresS11

and

S12

).ItalsocontinuedtooutperformCycleGANandrandomimputationbyawidemargin.Wealsoobservedthattheorderingoftranslationqualityisbroadlyconservedacrossthecancertypes.

Wealsoprovidestratifiedresultsin

FigureS13

basedonsub-cellularlocalization:nuclear(DAPI,PHH3,Ki-67,andT-bet),sur-face(CD4,CD138,CD11c,CD14,CD3,CD8,CD20,CD16,CD34,PD-1,andPD-L1),andcytoplasmic(CD68,tryptase,caspase-3,transgelin,cytokeratin,andactin).Generally,nuclearproteinshavebettertranslationqualitythancytoplasmicandsurfaceproteins.Thismakessenseasnuclearproteins,suchasDAPIandKi-67,generallyexhibitcompactstructureswithclearhistologicalboundaries.Bycontrast,cytoplasmicandsur-faceproteinsoftenexhibitdiffuseorheterogeneousspatialpat-terns,makingtheminherentlymorechallengingtopredict.

Cell189,1–15,January22,20265

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

Article

ll

OPENACCESS

A

B

C

D

Figure2.GigaTIMEenablestranslationfromH&EtomIFimages

(AandB)BarplotcomparingGigaTIMEandCycleGANonthetranslationperformanceintermsofDicescore(A)andPearsoncorrelation(B)witherrorbarsdenotingstandarddeviationandsignificancelevelsfromtwo-tailedttestsrepresentedby*p≤0.05,**p≤0.01,and***p≤0.001.

(C)ScatterplotscomparingtheactivationdensityofthetranslatedmIFandtheground-truthmIFacrossfourchannels.

(D)QualitativeresultsforasampleH&Ewhole-slideimagefromourheld-outtestsetwithzoomed-invisualizationsofthemeasuredmIFandGigaTIME-translatedmIFforDAPI,PD-L1,andCD68channels.

Seealso

FiguresS5

,

S8

,

S9

,

S10

,

S11

,

S13

,and

S14

.

Virtualpopulationenableslarge-scalediscoveryofprotein-biomarkerassociations

AftervalidatingGigaTIME’sperformanceintranslatingwhole-slideH&EimagesintomIFimages,wenextexaminedhowthevirtualmIFpopulationcanenablelarge-scaleclinical

discovery.Specifically,ourvirtualpopulationidentified1,234statisticallysignificantassociationsbetween21GigaTIME-translatedvirtualproteinchannelsand20clinicalbiomarkersatpan-cancer,cancer-type,andcancer-subtypelevels(

Figure3

A).Statisticalsignificancewasdeterminedby

6Cell189,1–15,January22,2026

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

ll

OPENACCESS

Article

A

C

B

D

E

F

G

H

Figure3.GigaTIMEidentifiesnovelTIMEproteinvs.biomarkerassociationsatpan-cancer,cancer-type,andcancer-subtypelevels

(A)GigaTIMEgeneratesavirtualpopulationof14,256withvirtualmIFbytranslatingavailableH&EimagestomIFimages,enablingpan-cancer,cancer-type,andcancer-subtypelevelsofbiomedicaldiscovery.

(legendcontinuedonnextpage)

Cell189,1–15,January22,20267

Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell

(2026),

/10.1016/j.cell.2025.11.016

cel

Article

cellress

OPENACCESS

comparingproteinactivationdensitiesbetweenbiomarker-positiveandbiomarker-negativegroupsusingttest,withpvaluesadjustedformultiplehypothesistesting(see

STAR

Methods

).

Atthepan-cancerlevel,weidentified175significantprotein-biomarkerassociations(

Figure3

B).Manyofthesefindingsaresupportedbyexistingliterature.Forinstance,bothhightu-mormutationalburden(TMB-H)andmicrosatelliteinstability-high(MSI-H)genotypesexhibitedstrongassociationswithincreasedactivationinTIME-relatedchannelssuchasCD138,CD20,CD68,andCD4,consistentwiththewell-describedef-fectsofantigenic-mediatedimmuneactivation.

24

,

25

Amonggenomicalterations,KMT2Dmutationsshowstrongpositivecorrelationswithmultipleimmunemarkers,includingCD3,CD8,andCD20,suggestingKMT2Dmutationsareassociatedwithenhancedimmuneinfiltrationatapan-cancerlevel.

26

Conversely,KRASmutationswerenegativelyassociatedwithmarkersofimmuneinfiltration,suchasCD3andCD8atthepan-cancerlevel,relectinganimmune-excludedphenotype.Interestingly,KRASmutationsalsoassociatednegativelywithPD-L1expression,despiteestablishedmechanismsbywhichKRASsignalingpromotesPD-L1expressionviatheERKpathway.

27

,

28

Furtherinvestigationisneededtodeterminewhethersuchcorrelationsarecausalormerelystemfromcon-foundingeffects.

TheclinicallyreportedPD-L1biomarker,assessedviaIHC,waspositivelycorrelatedwithvirtualPD-L1channelactivation,indicatingstrongconcordancebetweenvirtualpopulation-basedpredictionsandclinicallyobservedproteinexpression.Moreover,PD-L1IHCshowednegativeassociationswithseveralTIMEmarkers,includingCD3,CD8,andCD20,relectingtheroleofthePD-1/PD-L1checkpointinestablishingimmuneblockade.

29

Additionally,PD-L1expressionwasinverselycorre-latedwithproliferationmarkers(Ki-67andPHH3)andtheapoptosismarkercaspase3.OneexplanationforthesefindingsisthatPD-L1expressionisassociatedwithlessproliferativetu-morstatesthatdemonstrateresistancetoapoptosis.Alterna-tively,itisalsopossiblethatimmunecellsaresimplylessprolif-erativewhenthereishighPD-L1.

Atthecancer-typelevel,weobservedahighnumberofas-sociationsinbrain(

Figure3

C),lung(

Figure3

D),andbowelcan-cers(

Figure3

E),whicharealsothemostrepresentedcancertypesinourdataset(

FigureS3

).Specifically,GigaTIMEidenti-fied64protein-biomarkerassociationsinbraincancer,137inlungcancer,and175inbowelcancer.Manyoftheseassocia-tionsw

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論