版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
cel
Article
MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling
Graphicalabstract
virtualmF
GigaTMEtranslatesH&EimagesintomFimagesacross21proteinchannels
CD8PD-1
TryptasePHH3
CD16CD14CD138
Transgelin
CD11CActin
CD20CD34
caspase3
T-betCK
DAPICD68CD3PD-L1
ki67
CD4
virtualpopulation
H&Eimagespopulation-scaleReal-worldEvidence
>
>
Months
LongitudinalAnalysis
306cancersubtypes
BiomarkerDiscovery
14,256patients,from51hospitals
Highlights
Authors
JeyaMariaJoseValanarasu,HanwenXu,NaotoUsuyama,...,CarloBifulco,
ShengWang,HoifungPoon
Correspondence
carlo.bifulco@
(C.B.),
swang@
(S.W.),
hoifung@
(H.P.)
Inbrief
GigaTIMEleveragesmultimodalAIto
generatevirtualmultiplex
immunoluorescence(mIF)profilesfromstandardH&Eslides,enabling
comprehensivetumorimmune
microenvironmentmodelingacrossa
large(>14,000)anddiversepatient
population.Thisvirtualapproachunlocksnewopportunitiesforlarge-scaleclinicaldiscoveriesthatwerepreviouslyhinderedbythescarcityofmIFdata.
?GigaTIMEusesmultimodalAItotranslateH&Epathologyslidestospatialproteomics
?GigaTIMEgeneratesavirtualpopulationwithcellstatesfromroutineH&Eslides
?Virtualpopulationenableslarge-scaleclinicaldiscoveryandpatientstratification
?Virtualpopulationrevealsnewspatialandcombinatorialproteinactivationpatterns
Valanarasuetal.,2026,Cell189,1–15
January22,2026?2025TheAuthor(s).PublishedbyElsevierInc.
/10.1016/j.cell.2025.11.016
cellress
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
cel
cellress
OPENACCESS
Article
MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling
JeyaMariaJoseValanarasu,
1,
7
HanwenXu,
1,
2,
7
NaotoUsuyama,
1,
7
Chanwoo
Kim,1,
2,
7
CliffWong,
1
PenielArgaw,
1
RacheliBenShimol,
4
AngelaCrabtree,
4
KevinMatlock,
4
AlexandraQ.Bartlett,
4
JaspreetBagga,
1
YuGu,
1
ShengZhang,
1
TristanNaumann,
1
BernardA.Fox,
4
BillWright,
5
AriRobicsek,
5,
6
BrianPiening,
3,
4
CarloBifulco,
3,
4,
8,
*
ShengWang,
1,
2,
8,
*
andHoifungPoon
1,
8,
9,
*
1MicrosoftResearch,Redmond,WA,USA
2SchoolofComputerScienceandEngineering,UniversityofWashington,Seattle,WA,USA
3ProvidenceGenomics,Portland,OR,USA
4EarleA.ChilesResearchInstitute,ProvidenceCancerInstitute,Portland,OR,USA
5ProvidenceResearchNetwork,Renton,WA,USA
6ArclightIntelligence,Newton,MA,USA
7Theseauthorscontributedequally
8Seniorauthor
9Leadcontact
*Correspondence:
carlo.bifulco@
(C.B.),
swang@
(S.W.),
hoifung@
(H.P.)
/10.1016/j.cell.2025.11.016
SUMMARY
Thetumorimmunemicroenvironment(TIME)criticallyimpactscancerprogressionandimmunotherapyresponse.Multipleximmunoluorescence(mIF)isapowerfulimagingmodalityfordecipheringTIME,butitsapplicabilityislimitedbyhighcostandlowthroughput.WeproposeGigaTIME,amultimodalAIframeworkforpopulation-scaleTIMEmodelingbybridgingcellmorphologyandstates.GigaTIMElearnsacross-modaltranslatortogeneratevirtualmIFimagesfromhematoxylinandeosin(H&E)slidesbytrainingon40millioncellswithpairedH&EandmIFdataacross21proteins.WeappliedGigaTIMEto14,256patientsfrom51hos-pitalsandover1,000clinicsacrosssevenUSstatesinProvidenceHealth,generating299,376virtualmIFslidesspanning24cancertypesand306subtypes.Thisvirtualpopulationuncovered1,234statisticallysig-nificantassociationslinkingproteins,biomarkers,staging,andsurvival.Suchanalyseswerepreviouslyinfea-sibleduetothescarcityofmIFdata.Independentvalidationon10,200TCGApatientsfurthercorroboratedourfindings.
INTRODUCTION
Thetumorimmunemicroenvironment(TIME)playsacriticalroleincancerprogression,inluencingtumorgrowth,invasion,metastasis,andresponsetocancertherapiesbyaffectingtumorimmunesurveillanceandevasion.
1–3
TheTIMEisahighlycom-plexspatialecosystemconsistingofcancercells,anddiversenon-malignantcelltypes,includingimmunecells,cancer-asso-ciatedfibroblasts(CAFs),endothelialcells(ECs),pericytes,andothercelltypes,embeddedinanalteredextracellularmatrix.
4
Immunohistochemistry(IHC)visualizestheactivationofaspe-cificprotein,whichoffersanimportanttoolforunveilingkeycellstatesinTIMEstudy.Forexample,PD-L1IHCstainingiden-tifiestheactivationofthesuppressivetumorimmunecheckpointPD-L1,whichisawidelyusedpredictorforresponsetocheck-pointinhibitortherapies.AcriticallimitationofIHCisthattheac-tivationsareevaluatedoneproteinatatime,eachonaseparatetissuesample.Thisshortcomingisparticularlyproblematicfortumormicroenvironmentmodeling,wherethestudyofthecom-
plexinterplayamongtumorandimmunecellsrequiresthesimul-taneousevaluationofavarietyofproteins.Multipleximmunolu-orescence(mIF)hasemergedasapowerfulalternative,enablingco-localized,multi-channelproteinprofilingonthesametissuewhilepreservingthespatialarchitecture.
5–8
Despitethepromise,mIFremainsconsiderablyexpensiveforlarge-scalestudy,duetothesubstantialcostsofreagents,specializedequipment,andcomputationalinfrastructure,com-binedwiththelabor-intensiveworklowsforstaining,imaging,anddataprocessing.
8
,9
Consequently,existingmIFdatasetsareextremelyscarce,whichsignificantlylimittheirapplicabilityinclinicaldiscoveryandtranslation.Bycontrast,hematoxylinandeosin(H&E)imagesareroutinelygeneratedinclinicalwork-lowsatlowcostforstudyingtissuestructureandcellmorphology.
10
,
11
WhileanH&Eimagedoesnotexplicitlyrevealcellstates,thespatialconfigurationofcellsitrevealscanshedlightontheirindividualstates.Suchpatternsmightnotbeobviousforhumanexpertsbutarepotentiallydiscernibleusingadvancedmultimodal
AI.12–16
Recentadvancesinfoundation
Cell189,1–15,January22,2026?2025TheAuthor(s).PublishedbyElsevierInc.1ThisisanopenaccessarticleundertheCCBYlicense(
/licenses/by/4.0/
).
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
eacellress
OPENACCESS
cel
Article
modelsfurtheramplifythispotential,asAIhasdemonstratedsu-periorperformancebypretrainingfromalargecollectionofpa-thologyimages.
17–19
SuchadvancesinAIsuggesttheplausibilityoflearningpathologicalfeaturesindicativeofspatiallyresolvedproteinactivations.
Inthispaper,weproposeGigaTIME,amultimodalAIframe-workthatenablespopulation-scaleTIMEstudybylearningtogeneratevirtualmIFimagesfromreadilyavailableH&Eimages.GigaTIME’scross-modaltranslatorwaspretrainedusing40millioncellswithpairedH&EandmIFslidesforthesametis-sues.WeappliedGigaTIMEtogeneratevirtualmIFimagesforcancerpatientsfrom51hospitalsandoverathousandclinicsacrosssevenUSstatesatProvidenceHealth,yielding299,376virtualmIFwhole-slideimagesacross21proteinchan-nels.Thisenabledustocreatealargeanddiversevirtualpop-ulationof14,256patientsacross24cancertypesand306can-cersubtypes,withvirtualmIFslidesandkeyclinicalattributessuchasbiomarkers,staging,andsurvivalinformation.Inturn,thisenablesustoconductpopulation-scaleclinicaldiscovery,identifying181,453,and600statisticallysignificantTIMEpro-tein-biomarkerassociationsatthepan-cancer,cancer-type,andsubtypelevels,respectively,alladjustedformultipletesting,formingacomprehensiveprotein-biomarkerassocia-tioncollectionforTIME.Thevirtualpopulationalsoenabledpa-tientstratificationpredictiveofstagingandsurvival,withtheGigaTIMEsignatureintegratingallvirtualproteinactivationsoutperformingindividualvirtualproteinsinpatientstratification,underscoringtheimportanceofmultiplexedanalysis.Wedemonstratedhowavirtualpopulationcansupportspatiallyinformedmetrics,suchassharpnessandentropy.Wefurtheridentifiedcombinatorialproteinchannelsthatrevealedsyner-gisticassociations.Forexample,ourGigaTIMEanalysisfoundthatthecombinationofCD138andCD68outperformeachpro-teinaloneinpredictingallrepresentativeclinicalbiomarkers,withstatisticallysignificantdifferencefor13outof20bio-markers,suggestingtheircombinedroleinantibody-mediatedtumormechanisms.
ToevaluateGigaTIME’sgeneralizability,weappliedittogenerateanindependentvirtualpopulationof10,200tumorsfromtheCancerGenomeAtlas(TCGA).Weobservesignifi-cantconcordanceacrossthevirtualpopulationsfromProvi-denceandTCGA,whichattainedaSpearmancorrelationof0.88forvirtualproteinactivationsacrosscancersubtypes.ThetwopopulationsalsouncoverasignificantoverlapofTIMEprotein-biomarkerassociations(Fisher’sexacttest;p<2×10?9).Ontheotherhand,theProvidencevirtualpop-ulationyielded33%moresignificantassociationsthanTCGA,highlightingthevalueoflargeanddiversereal-worlddataforclinicaldiscovery.
GigaTIMEoffersapromisingAIframeworkforscalingtumormicroenvironmentmodelingbylearningtotranslatereadilyavail-ableH&EimagesintohighlyinformativevirtualmIFimages,thuspavingthewayforadvancingprecisionimmuno-oncologythroughpopulation-scaleTIMEanalysisanddiscovery.Tofacil-itatefutureresearchintumormicroenvironmentmodeling,wewillreleaseourpretrainedGigaTIMEmodel,aswellasourin-housedatasetof40millioncellsfromde-identifiedpairedH&EandmIFslidesacross21proteinchannels.
Table1.TIMEmarkersusedinourstudyandtheircellular
expression
TIMEmarker
Typicalcellularexpression
CD4
Thelper
CD138
Plasmacells
CD68
Macrophages
CD14
Monocytes
Tryptase
Mastcell
Caspase3
Cellsundergoingapoptosis
PHH3
Mitoticspindle
Ki67
Proliferatingcells(normalandtumor)
T-bet
NKcells,Tcells(CD3+,ofCD4+orCD8+lineages)
Transgelin
Fibroblasts;smoothmuscle
CD3
AllTcells
CK
Epithelialcelllineage
Actin
Myofibroblast
DAPI
Nuclearmarker
CD8
CytotoxicTcells
CD20
Bcells
CD16
CD16a:NKcells;CD16b:neutrophils¯ophages
CD34
Vascularmarker(alsoHematopoieticprecursors,capillaryendothelium)
PD-1
Tcells,Bcells
PD-L1
Antigenpresentingcells(APCs),tumorcells,vascularendothelium
CD11c
Dendriticcells(antigenpresenting)
Tablelistingalltumorimmunemicroenvironment(TIME)markersincludedinouranalysis,alongwiththeirpredominantcellularlocalizationandbiologicalfunction.
RESULTS
GigaTIMEgeneratesavirtualpopulationofmultipleximmunoluorescence
GigaTIMEenablesthegenerationofalargeanddiversevirtualpopulationofmIFimagesfrompopulation-scaleH&Eslides.Wefirstexperimentallyacquired441mIFimagesfrom21H&E-stainedslidesacross21proteinchannels(see
STARMethods
;FigureS1;
Table1
).ThesepairedH&EandmIFslideswereprocessedthroughacomputationalpipelinethatincludesimageregistrationandcellsegmentation,resultinginadatasetcomprising40millioncellswithpairedH&EandmIFslides(
Figures1
Aand
S2
).
Wedividedthepaireddataintotraining,development,andheld-outtestsets(see
STARMethods
).TotranslateH&EimagesintomIFones,GigaTIMEwastrainedonthetrainingpaireddatausingapatch-basedencoder-decoderarchitecturebuiltonNes-tedUNet.
20
ThemodelinputsanH&Eimagepatchandoutputs21correspondingmIFpatches,oneforeachproteinchannel.Thesechannel-specificpatchesaresubsequentlystitchedtogethertoreconstructthewhole-slidemIFimages,enablingspatiallyresolved,slide-levelproteinactivationprofiling.
2Cell189,1–15,January22,2026
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
Article
ll
OPENACCESS
C
A
B
Figure1.GigaTIMEenablespopulation-scaletumorimmunemicroenvironmentanalysis
(A)GigaTIMEinputsahematoxylinandeosin(H&E)whole-slideimageandoutputsmultipleximmunoluorescence(mIF)across21proteinchannels.ByapplyingGigaTIMEto14,256patients,wegeneratedavirtualpopulationwithmIFinformation,leadingtopopulation-scalediscoveryonclinicalbiomarkersandpatientstratification,withindependentvalidationonTCGA.
(B)Circularplotvisualizingatumorimmunemicroenvironment(TIME)spectrumencompassingtheGigaTIME-translatedvirtualmIFactivationscoresacrossdifferentproteinchannelsatthepopulationscale,whereeachchannelisrepresentedasanindividualcircularbarchartsegment.TheinnercircleencodesOncoTree,whichclassifies14,256patientsinto306subtypesacross24cancertypes.Theoutercirclegroupstheseactivationsbycancertypes,allowingvisualcomparisonacrossmajorcategories.
(C)Scatterplotcomparingthesubtype-levelGigaTIME-translatedvirtualmIFactivationsbetweenTCGAandProvidencevirtualpopulations.Eachdotdenotestheaverageactivationscoreofaproteinchannelamongalltumorsofacancersubtype.
SeealsoFiguresS1,
S2
,
S3
,and
S4
.
Cell189,1–15,January22,20263
4Cell189,1–15,January22,2026
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
eacellress
OPENACCESS
cel
Article
Effectively,givenaproteinchannel,GigaTIMEoutputsabinaryclassificationlabelforeachpixelindicatingwhetheritisacti-vatedforthegivenproteinchannel.Wecanthentallythecountofactivatedpixels,aswellasactivationdensityscore(proportionofactivatedpixels),foranyimagepatchorwholeslide.
WethenappliedGigaTIMEtoalargeanddiversereal-worldda-tasetconsistingof14,256whole-slideH&Eimagescollectedfrom51hospitalsandover1,000clinicsacrosssevenUSstatesatProvidenceHealth,encompassing24cancertypesand306can-cersubtypes(
FigureS3
).Usingourtrainedmodel,wegenerated299,376virtualmIFwhole-slideimagesforthesepatients.Thisen-ablesustoconstructalarge-scaleanddiversemultimodalvirtualpopulationwithH&EandvirtualmIFimages,alongwithclinicalat-tributes,suchasbiomarkers,staging,andsurvivalstatus.
Asaproofofconcept,wequantifiedaproteinactivationden-sityscoreforeachmIFimage,definedastheproportionofacti-vatedpixels.Thesescoreswereaggregatedacrosstumorsofthesamesubtypeusingmeanpooling,yieldingaspectrumofmIF-basedTIMEfeaturesacrosscancersubtypes(
Figure1
B).Toevaluatetherobustnessofourapproach,wefurtherappliedGigaTIMEto10,200tumorsfromTCGA,generating214,200vir-tualmIFwhole-slideimagesacross21channels(
FigureS4
).Ahighdegreeofconcordancewasobservedbetweentheaggre-gatedactivationscoresderivedfromtheProvidence-basedandTCGA-basedvirtualpopulations(
Figure1
C),underscoringthegeneralizabilityandreliabilityofGigaTIME.
GigaTIMEtranslateswhole-slideH&EimagestomIF
WefirstevaluatedGigaTIME’sperformanceintranslatingstan-dardH&Ewhole-slideimagesintomIFimages.Tobenchmarkthistranslationtasksystematically,wecomparedGigaTIMEwithCycleGAN,
21
awidelyusedimagetranslationmodelfrequentlyappliedinvirtualstainingtasks.
22
Evaluationwascon-ductedusingthreestandardmetricsacrossdifferentlevelsofgranularity(pixel,cell,andslide)tocapturebothlocalandglobaltranslationfidelity.WealsoevaluatedanaverageactivationbaselinebyfirstcomputingtheaveragepositivityrateforeachproteinchannelinthegoldmIFdata,andthenusingthatasthesamplingprobabilitytogeneratevirtualpositivepixelsforthegivenchannel.Atthepixellevel,wetreatedthetranslationproblemasasegmentationtaskandusedtheDicescoretoeval-uatefine-grainedspatialconcordancebetweenthemeasuredmIFandGigaTIME-translatedvirtualmIF.Duringevaluation,weskippedallblankregionsatthe8×8leveltominimizepoten-tialriskforthemtoinlatethescores.
GigaTIMEsignificantlyoutperformedCycleGANon15outof21proteinchannels(nostatisticallysignificantdifferencefortheremaining6channels),highlightingtheimportanceofacquiringpairedH&E-mIFdataandlearningdirectlyfromsuchpaireddata(
Figure2
A).Wealsoobservedthattheaverageacti-vationbaselineperformedverypoorly.Forexample,thetestDicescoreforaverageactivationbaselinewasonly0.12forDAPI,comparedto0.72attainedbyGigaTIME.TheDicescoresforaverageactivationbaselineinotherproteinchannelswereevenworse.
Toassessperformanceatthecelllevel,weusedan8×8-pixelwindowandcountedthenumberofactivatedpixelsineachwin-dowforeachchannel.Pearsoncorrelationwasthencomputed
betweenpredictedandground-truthcountsacrossthewin-dows.GigaTIMEachievedsignificantlyhighercorrelationsthanCycleGAN,whichperformedclosetorandom,suggestingthatCycleGANfailstorecovercoherentcell-levelpatterns(
Figure2
B).Inparticular,GigaTIMEachievedaPearsoncorrela-tionof0.59ontheDAPIchannel,whichbindsDNAandmarksnuclei,indicatingitscapabilityinidentifyingandlocalizingindi-vidualcells.Bycontrast,CycleGANattainsaPearsoncorrelationof0.03.Theaverageactivationbaselineisevenworse,attainingzeroornegativescores(
FigureS8
).
TheseresultsverifiedthatGigaTIMEindeedlearnednon-trivialgeneralizableinformationabouttissueandproteinstructures.Forevaluatingglobalspatialpatterns,weimplementedaslide-levelmetricinspiredbyimmunoscore,
23
avalidatedscoringmethodthatwasoriginallydevelopedforcolorectalcancerandhasbeenusedinassociationstudiesofpatientoutcomesandtreatmentresponse.Weimplementedaconceptuallysimilarversionbycomputingtheratioofactivatedpixelswithineach256×256patch,andthencalculatedtheSpearmancorrelationforpatch-wiseactivationratiosbetweenthemeasuredmIFandGigaTIME-translatedvirtualmIF.Thismetricprovidesabroaderviewthatcomplementspixel-andcell-levelevaluations.Giga-TIMEachievedaSpearmancorrelationof0.98forDAPIand0.56forallchannels,whereasCycleGANyieldednear-zerocor-relationforallchannels(
Figures2
Cand
S5
),validatingthene-cessityoftrainingonpairedH&EandmIFdataforaccuratecross-modaltranslation.Finally,qualitativecomparisonsonrepresentativewhole-slideimagepatchesfurtherillustratetheagreementbetweenthemeasuredmIFandtheGigaTIME-trans-latedvirtualmIF(
Figure2
D).
TofurtherassessthegeneralizabilityofGigaTIME,wecon-ductedadditionalanalysesbasedonnewlygeneratedpaireddatatodirectlyevaluatesupervisedvirtualmIFgenerationonun-seencancertypes.Specifically,wecuratedtumorcoresfromtis-suemicroarrays(TMAs)ofbreastandbrain,whichwerenotincludedinthetrainingdata.Thesecohortsencompassawidespectrumofhistologicalsubtypesandclinicalstages.Inadditiontothedifferencesincancertypes,stages,andhistologies,thenewmIFdatacomprisemanysmall,cylindricaltissuesamplesseparatedbyblankregions,whichwerequitedifferentfromtheoriginalwholeslideswithlargecontiguoustissueregions.Despiteallthesemajordifferences,GigaTIMEhasdemonstratedremarkablegeneralizabilityinDicescoresandPearsoncorrela-tions(
FiguresS11
and
S12
).ItalsocontinuedtooutperformCycleGANandrandomimputationbyawidemargin.Wealsoobservedthattheorderingoftranslationqualityisbroadlyconservedacrossthecancertypes.
Wealsoprovidestratifiedresultsin
FigureS13
basedonsub-cellularlocalization:nuclear(DAPI,PHH3,Ki-67,andT-bet),sur-face(CD4,CD138,CD11c,CD14,CD3,CD8,CD20,CD16,CD34,PD-1,andPD-L1),andcytoplasmic(CD68,tryptase,caspase-3,transgelin,cytokeratin,andactin).Generally,nuclearproteinshavebettertranslationqualitythancytoplasmicandsurfaceproteins.Thismakessenseasnuclearproteins,suchasDAPIandKi-67,generallyexhibitcompactstructureswithclearhistologicalboundaries.Bycontrast,cytoplasmicandsur-faceproteinsoftenexhibitdiffuseorheterogeneousspatialpat-terns,makingtheminherentlymorechallengingtopredict.
Cell189,1–15,January22,20265
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
Article
ll
OPENACCESS
A
B
C
D
Figure2.GigaTIMEenablestranslationfromH&EtomIFimages
(AandB)BarplotcomparingGigaTIMEandCycleGANonthetranslationperformanceintermsofDicescore(A)andPearsoncorrelation(B)witherrorbarsdenotingstandarddeviationandsignificancelevelsfromtwo-tailedttestsrepresentedby*p≤0.05,**p≤0.01,and***p≤0.001.
(C)ScatterplotscomparingtheactivationdensityofthetranslatedmIFandtheground-truthmIFacrossfourchannels.
(D)QualitativeresultsforasampleH&Ewhole-slideimagefromourheld-outtestsetwithzoomed-invisualizationsofthemeasuredmIFandGigaTIME-translatedmIFforDAPI,PD-L1,andCD68channels.
Seealso
FiguresS5
,
S8
,
S9
,
S10
,
S11
,
S13
,and
S14
.
Virtualpopulationenableslarge-scalediscoveryofprotein-biomarkerassociations
AftervalidatingGigaTIME’sperformanceintranslatingwhole-slideH&EimagesintomIFimages,wenextexaminedhowthevirtualmIFpopulationcanenablelarge-scaleclinical
discovery.Specifically,ourvirtualpopulationidentified1,234statisticallysignificantassociationsbetween21GigaTIME-translatedvirtualproteinchannelsand20clinicalbiomarkersatpan-cancer,cancer-type,andcancer-subtypelevels(
Figure3
A).Statisticalsignificancewasdeterminedby
6Cell189,1–15,January22,2026
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
ll
OPENACCESS
Article
A
C
B
D
E
F
G
H
Figure3.GigaTIMEidentifiesnovelTIMEproteinvs.biomarkerassociationsatpan-cancer,cancer-type,andcancer-subtypelevels
(A)GigaTIMEgeneratesavirtualpopulationof14,256withvirtualmIFbytranslatingavailableH&EimagestomIFimages,enablingpan-cancer,cancer-type,andcancer-subtypelevelsofbiomedicaldiscovery.
(legendcontinuedonnextpage)
Cell189,1–15,January22,20267
Pleasecitethisarticleinpressas:Valanarasuetal.,MultimodalAIgeneratesvirtualpopulationfortumormicroenvironmentmodeling,Cell
(2026),
/10.1016/j.cell.2025.11.016
cel
Article
cellress
OPENACCESS
comparingproteinactivationdensitiesbetweenbiomarker-positiveandbiomarker-negativegroupsusingttest,withpvaluesadjustedformultiplehypothesistesting(see
STAR
Methods
).
Atthepan-cancerlevel,weidentified175significantprotein-biomarkerassociations(
Figure3
B).Manyofthesefindingsaresupportedbyexistingliterature.Forinstance,bothhightu-mormutationalburden(TMB-H)andmicrosatelliteinstability-high(MSI-H)genotypesexhibitedstrongassociationswithincreasedactivationinTIME-relatedchannelssuchasCD138,CD20,CD68,andCD4,consistentwiththewell-describedef-fectsofantigenic-mediatedimmuneactivation.
24
,
25
Amonggenomicalterations,KMT2Dmutationsshowstrongpositivecorrelationswithmultipleimmunemarkers,includingCD3,CD8,andCD20,suggestingKMT2Dmutationsareassociatedwithenhancedimmuneinfiltrationatapan-cancerlevel.
26
Conversely,KRASmutationswerenegativelyassociatedwithmarkersofimmuneinfiltration,suchasCD3andCD8atthepan-cancerlevel,relectinganimmune-excludedphenotype.Interestingly,KRASmutationsalsoassociatednegativelywithPD-L1expression,despiteestablishedmechanismsbywhichKRASsignalingpromotesPD-L1expressionviatheERKpathway.
27
,
28
Furtherinvestigationisneededtodeterminewhethersuchcorrelationsarecausalormerelystemfromcon-foundingeffects.
TheclinicallyreportedPD-L1biomarker,assessedviaIHC,waspositivelycorrelatedwithvirtualPD-L1channelactivation,indicatingstrongconcordancebetweenvirtualpopulation-basedpredictionsandclinicallyobservedproteinexpression.Moreover,PD-L1IHCshowednegativeassociationswithseveralTIMEmarkers,includingCD3,CD8,andCD20,relectingtheroleofthePD-1/PD-L1checkpointinestablishingimmuneblockade.
29
Additionally,PD-L1expressionwasinverselycorre-latedwithproliferationmarkers(Ki-67andPHH3)andtheapoptosismarkercaspase3.OneexplanationforthesefindingsisthatPD-L1expressionisassociatedwithlessproliferativetu-morstatesthatdemonstrateresistancetoapoptosis.Alterna-tively,itisalsopossiblethatimmunecellsaresimplylessprolif-erativewhenthereishighPD-L1.
Atthecancer-typelevel,weobservedahighnumberofas-sociationsinbrain(
Figure3
C),lung(
Figure3
D),andbowelcan-cers(
Figure3
E),whicharealsothemostrepresentedcancertypesinourdataset(
FigureS3
).Specifically,GigaTIMEidenti-fied64protein-biomarkerassociationsinbraincancer,137inlungcancer,and175inbowelcancer.Manyoftheseassocia-tionsw
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 21470-2008錘上鋼質(zhì)自由鍛件機械加工余量與公差 盤、柱、環(huán)、筒類》專題研究報告
- 《GBT 14296-2008空氣冷卻器與空氣加熱器》專題研究報告
- 道路養(yǎng)護安全培訓方案模板課件
- 2025-2026年湘教版初三歷史上冊期末試題解析+答案
- 2026年六年級數(shù)學上冊期末試題+解析
- 2026年江蘇高考生物試卷含答案
- 2025-2026年人教版五年級數(shù)學上冊期末試題解析及答案
- 《中國法布雷病超聲心動圖規(guī)范化篩查指南(2024版)》解讀
- 中考語文文言文對比閱讀(全國)01 《詠雪》對比閱讀(原卷版)
- 邊城課件基本知識
- 礦產(chǎn)企業(yè)管理辦法
- 2025秋季學期國開電大專本科《經(jīng)濟法學》期末紙質(zhì)考試名詞解釋題庫珍藏版
- 建筑設(shè)計防火規(guī)范-實施指南
- 2025國開《中國古代文學(下)》形考任務(wù)1234答案
- 肺部感染中醫(yī)護理
- 租地合同協(xié)議書合同
- 《肺炎的CT表現(xiàn)》課件
- 糧食倉儲設(shè)施建設(shè)維修資金申請報告
- 腦器質(zhì)性精神障礙護理查房
- 中考英語聽力命題研究與解題策略省公開課金獎全國賽課一等獎微課獲獎?wù)n件
- 物聯(lián)網(wǎng)智能家居設(shè)備智能控制手冊
評論
0/150
提交評論