2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題含解析_第1頁
2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題含解析_第2頁
2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題含解析_第3頁
2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題含解析_第4頁
2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆安徽省安慶一中、安師大附中、銅陵一中、馬鞍山二中高二上數(shù)學期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°2.焦點坐標為的拋物線的標準方程是()A. B.C. D.3.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.4.集合,則集合A的子集個數(shù)為()A.2個 B.4個C.8個 D.16個5.在數(shù)列中,,,則()A. B.C. D.6.直線與圓的位置關系是()A.相交 B.相切C.相離 D.都有可能7.已知在直角坐標系xOy中,點Q(4,0),O為坐標原點,直線l:上存在點P滿足.則實數(shù)m的取值范圍是()A. B.C. D.8.設點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.9.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.10.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.11.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.12.已知數(shù)列中,,則()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________14.已知拋物線C:的焦點為F,準線為l,過點F斜率為的直線與拋物線C交于點M(M在x軸的上方),過M作于點N,連接NF交拋物線C于點Q,則__________15.給定點、、與點,求點到平面的距離______.16.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.18.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.19.(12分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和20.(12分)某外語學校的一個社團中有7名同學,其中2人只會法語;2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學校交流訪問(1)在選派的3人中恰有2人會法語的概率;(2)在選派的3人中既會法語又會英語的人數(shù)X的分布列和數(shù)學期望21.(12分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用直線的方向向量求出其斜率,進而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B2、D【解析】依次確定選項中各個拋物線的焦點坐標即可.【詳解】對于A,的焦點坐標為,A錯誤;對于B,的焦點坐標為,B錯誤;對于C,焦點坐標為,C錯誤;對于D,的焦點坐標為,D正確.故選:D.3、B【解析】根據(jù)圓的性質,結合圓的切線的性質進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B4、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數(shù)為,故選:C.5、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.6、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關系是相交,故選:A.7、A【解析】根據(jù)給定直線設出點P的坐標,再借助列出關于的不等式,然后由不等式有解即可計算作答.【詳解】因點P在直線l:上,則設,于是有,而,因此,,即,依題意,上述關于的一元二次不等式有實數(shù)解,從而有,解得,所以實數(shù)m的取值范圍是.故選:A8、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C9、B【解析】計算出、的值,執(zhí)行程序框圖中的程序,進而可得出輸出結果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.10、D【解析】設橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結論【詳解】如圖,設橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題11、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調遞增;導函數(shù)小于,原函數(shù)單調遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以在單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.12、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內的正整數(shù)中,被3除余1由小到大構成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.14、【解析】由題意畫出圖形,寫出直線的方程,與拋物線方程聯(lián)立求出的坐標,進一步求出的坐標,求得即可求解【詳解】解:如圖,由拋物線,得,,則,與拋物線聯(lián)立得,解得、,,,,,為等邊三角形,,過作軸的垂線交軸于,設,,,,,在拋物線上,,解得,,,,則,故答案為:15、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.16、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:34三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導,根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構造一個關于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導數(shù)研究函數(shù)在上的單調性,比較極值和端點值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域為,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調遞減單調遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內的最值問題,考查利用導函數(shù)研究函數(shù)在給定閉區(qū)間內的單調性,以及通過比較極值和端點值確定函數(shù)在閉區(qū)間內的最值,考查運算能力.18、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,19、(1),;(2),.【解析】(1)根據(jù)的關系可得,根據(jù)等比數(shù)列的定義寫出的通項公式,進而可得的通項公式;(2)利用的關系求的通項公式,結合(1)結論可得,再應用分組求和、錯位相消法求的前n項和【小問1詳解】.①當時,,可得當時,.②①-②得,則,而a1-1=1不為零,故是首項為1,公比為2的等比數(shù)列,則∴數(shù)列的通項公式為,【小問2詳解】∵,∴當時,,當時,,又也適合上式,∴,∴,令,,則,又,∴20、(1)(2)分布列見解析;【解析】(1)利用組合的知識計算出基本事件總數(shù)和滿足題意的基本事件數(shù),根據(jù)古典概型概率公式求得結果;(2)確定所有可能的取值,根據(jù)超幾何分布概率公式可計算出每個取值對應的概率,進而得到分布列和數(shù)學期望.【小問1詳解】名同學中,會法語的人數(shù)為人,從人中選派人,共有種選法;其中恰有人會法語共有種選法;選派的人中恰有人會法語的概率.【小問2詳解】由題意可知:所有可能的取值為,;;;;的分布列為:數(shù)學期望為21、(1)(2)證明見解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標準方程.(2)設出直線的方程并與橢圓方程聯(lián)立,由此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論