黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市尚志中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的三個頂點(diǎn)是,,,則邊上的高所在的直線方程為()A. B.C. D.2.過點(diǎn)與直線平行的直線的方程是()A. B.C. D.3.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.4.已知等差數(shù)列的前n項(xiàng)和為Sn,首項(xiàng)a1=1,若,則公差d的取值范圍為()A. B.C. D.5.已知數(shù)列的前項(xiàng)和為,當(dāng)時,()A.11 B.20C.33 D.356.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.7.氣象臺正南方向的一臺風(fēng)中心,正向北偏東30°方向移動,移動速度為,距臺風(fēng)中心以內(nèi)的地區(qū)都將受到影響,若臺風(fēng)中心的這種移動趨勢不變,氣象臺所在地受到臺風(fēng)影響持續(xù)時間大約是()A. B.C. D.8.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則公差的值為()A. B.2C.3 D.49.已知橢圓的左、右焦點(diǎn)分別是,焦距,過點(diǎn)的直線與橢圓交于兩點(diǎn),若,且,則橢圓C的方程為()A. B.C. D.10.設(shè)等比數(shù)列的前項(xiàng)和為,若,則()A. B.C. D.11.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.12.等差數(shù)列的公差,且,,則的通項(xiàng)公式是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時每步隨機(jī)選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.14.點(diǎn)到直線的距離為________.15.若,滿足不等式組,則的最大值為________.16.已知為坐標(biāo)原點(diǎn),、分別是雙曲線的左、右頂點(diǎn),是雙曲線上不同于、的動點(diǎn),直線、與軸分別交于點(diǎn)、兩點(diǎn),則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:經(jīng)過點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由18.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的值.19.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點(diǎn),P為線段上的動點(diǎn)(1)求證:;(2)當(dāng)點(diǎn)P滿足時,求證:直線平面;(3)是否存在點(diǎn)P,使直線與平面所成角的正弦值為?若存在,試確定P點(diǎn)的位置;若不存在,請說明理由20.(12分)已知拋物線C:,過點(diǎn)且斜率為k的直線與拋物線C相交于P,Q兩點(diǎn).(1)設(shè)點(diǎn)B在x軸上,分別記直線PB,QB的斜率為.若,求點(diǎn)B的坐標(biāo);(2)過拋物線C的焦點(diǎn)F作直線PQ的平行線與拋物線C相交于M,N兩點(diǎn),求的值.21.(12分)已知橢圓:的一個頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn)M,N(1)求橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)?shù)拿娣e為時,求的值22.(10分)在①,②,③這三個條件中任選一個補(bǔ)充在下面問題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且(1)求數(shù)列的通項(xiàng)公式;(2)求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出邊上的高所在的直線的斜率,再利用點(diǎn)斜式方程可得答案.【詳解】因?yàn)?,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.2、A【解析】根據(jù)題意利用點(diǎn)斜式寫出直線方程即可.【詳解】解:過點(diǎn)的直線與直線平行,,即.故選:A.3、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.4、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A5、B【解析】由數(shù)列的性質(zhì)可得,計(jì)算可得到答案.【詳解】由題意,.故答案為B.【點(diǎn)睛】本題考查了數(shù)列的前n項(xiàng)和的性質(zhì),屬于基礎(chǔ)題.6、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.7、D【解析】利用余弦定理進(jìn)行求解即可.【詳解】如圖所示:設(shè)臺風(fēng)中心為,,小時后到達(dá)點(diǎn)處,即,當(dāng)時,氣象臺所在地受到臺風(fēng)影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風(fēng)影響持續(xù)時間大約是,故選:D8、C【解析】根據(jù)等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】,故選:C9、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點(diǎn),得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點(diǎn),可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.10、C【解析】利用等比數(shù)列前項(xiàng)和的性質(zhì),,,,成等比數(shù)列求解.【詳解】解:因?yàn)閿?shù)列為等比數(shù)列,則,,成等比數(shù)列,設(shè),則,則,故,所以,得到,所以.故選:C.11、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C12、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項(xiàng)公式.【詳解】解:因?yàn)閿?shù)列為等差數(shù)列,所以,因?yàn)椋钥梢钥闯梢辉畏匠痰膬蓚€根,因?yàn)椋?,所以,解得,所以故選:C【點(diǎn)睛】此題考查的是等差數(shù)列的通項(xiàng)公式和性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計(jì)算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:14、【解析】利用點(diǎn)到直線的距離公式即可得出【詳解】利用點(diǎn)到直線的距離可得:故答案為:15、10【解析】作出不等式區(qū)域,如圖所示:目標(biāo)最大值,即為平移直線的最大縱截距,當(dāng)直線經(jīng)過點(diǎn)時最大為10.故答案為10.點(diǎn)睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.16、3【解析】求得坐標(biāo),設(shè)出點(diǎn)坐標(biāo),求得直線的方程,由此求得兩點(diǎn)的縱坐標(biāo),進(jìn)而求得.【詳解】依題意,設(shè),則,直線的方程為,則,直線的方程為,則,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因?yàn)闄E圓C:的離心率,且過點(diǎn)所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)?,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時當(dāng)且僅當(dāng)即時取等號又因?yàn)?,所以,所以?dāng)k=0時,②斜率不存在時,直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.18、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點(diǎn)在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達(dá)定理得出的關(guān)系,再根據(jù)中點(diǎn)坐標(biāo)公式求出線段的中點(diǎn)的坐標(biāo),代入圓方程即可求解.【小問1詳解】由題意,設(shè)雙曲線的方程為,則又因?yàn)殡p曲線過點(diǎn),,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設(shè),則因?yàn)橹本€與雙曲線交于不同的兩點(diǎn),所以,解得.,所以則中點(diǎn)坐標(biāo)為,代入圓得,解得.實(shí)數(shù)的值為19、(1)見解析(2)見解析(3)存在點(diǎn)P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點(diǎn),,,所在直線為軸,軸,軸建立如圖空間直角坐標(biāo)系,因?yàn)?,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小?詳解】設(shè)點(diǎn)坐標(biāo)為,則,∵,∴,,,解得:,,,即設(shè)平面的一個法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問3詳解】設(shè),則,設(shè)的一個法向量為∵,,∴,解,令,則,,得設(shè)與平面所成角為,則.解得:或(舍).故存在點(diǎn)P,,即點(diǎn)P為距的第一個5等分點(diǎn)20、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達(dá)定理結(jié)合已知條件可求得點(diǎn)的坐標(biāo);(2)直線的方程為,利用傾斜角定義知,,聯(lián)立直線與拋物線方程,利用弦長公式求得,進(jìn)而得解.小問1詳解】由題意,直線的方程為,其中.設(shè),聯(lián)立,消去得..,,即.,即.,,∴點(diǎn)的坐標(biāo)為.【小問2詳解】由題意,直線的方程為,其中,為傾斜角,則,設(shè).聯(lián)立,消去得...21、(1)(2)【解析】(1)由橢圓的一個頂點(diǎn)為,得到,再由橢圓的離心率為,求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程;(2)由橢圓的對稱性得到,聯(lián)立方程組求得,根據(jù)的面積為,列出方程,即可求解.【小問1詳解】解:由題意,橢圓的一個頂點(diǎn)為,可得,又由橢圓的離心率為,可得,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:設(shè),且根據(jù)橢圓的對稱性得,聯(lián)立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論