版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆河北省棗強縣棗強中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某次數(shù)學(xué)考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩位老師獨立評分,稱為一評和二評,當(dāng)兩者所評分數(shù)之差的絕對值小于或等于分時,取兩者平均分為該題得分;當(dāng)兩者所評分數(shù)之差的絕對值大于分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分.如圖所示,當(dāng),,時,則()A. B.C.或 D.2.設(shè),則曲線在點處的切線的傾斜角是()A. B.C. D.3.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.4.已知等差數(shù)列為其前項和,且,且,則()A.36 B.117C. D.135.已知數(shù)列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-16.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.7.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.68.為推動黨史學(xué)習(xí)教育各項工作扎實開展,營造“學(xué)黨史、悟思想、辦實事、開新局”的濃厚氛圍,某校黨委計劃將中心組學(xué)習(xí)、專題報告會、黨員活動日、主題班會、主題團日這五種活動分5個階段安排,以推動黨史學(xué)習(xí)教育工作的進行,若主題班會、主題團日這兩個階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種9.橢圓以坐標(biāo)軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C.或 D.或10.已知函數(shù),則()A. B.C. D.11.求點關(guān)于x軸的對稱點的坐標(biāo)為()A. B.C. D.12.命題:,否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準(zhǔn)線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____14.已知是雙曲線的左、右焦點,點M是雙曲線E上的任意一點(不是頂點),過作角平分線的垂線,垂足為N,O是坐標(biāo)原點.若,則雙曲線E的漸近線方程為__________15.隨機投擲一枚均勻的硬幣兩次,則兩次都正面朝上的概率為______16.圓與圓的位置關(guān)系為______(填相交,相切或相離).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求曲線在點(0,f(0))處的切線方程;(2)若存在,使得不等式成立,求m的取值范圍18.(12分)已知,命題p:對任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍19.(12分)已知圓.(1)若不過原點的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.20.(12分)設(shè)數(shù)列滿足(1)求的通項公式;(2)記數(shù)列的前項和為,是否存在實數(shù),使得對任意恒成立.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面積為,求a+c的值22.(10分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】按照框圖考慮成立和不成立即可求解.【詳解】因為,,,所以輸入,當(dāng)成立時,,即,解得,,滿足條件;當(dāng)不成立時,,即,解得,,不滿足條件;故.故選:B.2、C【解析】根據(jù)導(dǎo)數(shù)的概念可得,再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C3、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負,故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負后正,故排除D.故選:C.4、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.5、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數(shù)列,∴,即,∴當(dāng)時,,當(dāng)時,也適合上式,所以故選:A.6、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.7、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設(shè)正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D8、A【解析】對中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會、主題團日在第二、三階段,則其它活動有2種方法;主題班會、主題團日在第三、四階段,則其它活動有1種方法;主題班會、主題團日在第四、五階段,則其它活動有1種方法,則此時共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個階段有種方法.綜合得不同的安排方案共有10種.故選:A9、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當(dāng)橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當(dāng)橢圓焦點在軸上時,,,橢圓方程為,故選:C.10、B【解析】求出,代值計算可得的值.【詳解】因為,則,故.故選:B.11、D【解析】根據(jù)點關(guān)于坐標(biāo)軸的對稱點特征,直接寫出即可.【詳解】A點關(guān)于x軸對稱點,橫坐標(biāo)不變,縱坐標(biāo)與豎坐標(biāo)為原坐標(biāo)的相反數(shù),故點的坐標(biāo)為,故選:D12、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用已知條件求出p,設(shè)出P的坐標(biāo),然后求解的表達式,利用基本不等式即可得出結(jié)論【詳解】解:由題意可知:,設(shè)點,P到直線的距離為d,則,所以,當(dāng)且僅當(dāng)x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質(zhì)的應(yīng)用,基本不等式的應(yīng)用,屬于中檔題14、【解析】延長交于點,利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長交于點,∵是的平分線,,,又是中點,所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.15、##【解析】列舉出所有情況,利用古典概型的概率公式求解即可【詳解】隨機投擲一枚均勻的硬幣兩次,共有:正正,正反,反正,反反共4種情況,兩次都是正面朝上的有:正正1種情況,所以兩次都正面朝上的概率為,故答案為:16、相交【解析】求兩圓圓心距,并與半徑之和、半徑之差的絕對值比較即可.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,∵,∴兩圓相交.故答案為:相交.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用導(dǎo)數(shù)求出切線斜率,即可求出切線方程;(2)把題意轉(zhuǎn)化為:存在,使得不等式成立,構(gòu)造新函數(shù),對m進行分類討論,利用導(dǎo)數(shù)求,解不等式,即可求出m的范圍.【小問1詳解】當(dāng)時,,定義域為R,.所以,.所以曲線在點(0,f(0))處的切線方程為:,即.【小問2詳解】不等式可化為:,即存在,使得不等式成立.構(gòu)造函數(shù),則.①當(dāng)時,恒成立,故在上單調(diào)遞增,故,解得:,故;②當(dāng)時,令,解得:令,解得:故在上單調(diào)遞減,在上單調(diào)遞增,又,故,解得:,這與相矛盾,舍去;③當(dāng)時,恒成立,故在上單調(diào)遞減,故,不符合題意,應(yīng)舍去.綜上所述:m的取值范圍為:.18、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據(jù)題設(shè)可得真或真,后者可用參變分離求出的取值范圍,結(jié)合(1)可求的取值范圍.【小問1詳解】當(dāng)p為真命題時,當(dāng)時,不等式顯然成立;當(dāng)時,解得,故a取值范圍為.【小問2詳解】當(dāng)q為真命題時,問題等價于存在,使得不等式成立,即,∵,當(dāng)且僅當(dāng)x=1時等號成立,∴因為為真命題,所以真或真,故a的取值范圍是19、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問1詳解】因為直線不過原點,設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問2詳解】因為,所以直線與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.20、(1)(2)存在【解析】(1)利用“退作差”法求得的通項公式.(2)利用裂項求和法求得,由此求得.【小問1詳解】依題意①,當(dāng)時,.當(dāng)時,②,①-②得,,時,上式也符合.所以.【小問2詳解】.所以.故存在實數(shù),使得對任意恒成立.21、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因為bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)近期工作重點
- 《GB-T 25329-2010企業(yè)節(jié)能規(guī)劃編制通則》專題研究報告
- 《GBT 30083-2013銅、鉛和鋅礦及精礦 計量方法的精密度和偏差》專題研究報告
- 《GBT 9742-2008化學(xué)試劑 硅酸鹽測定通 用方法》專題研究報告
- 《GBT 14611-2008糧油檢驗 小麥粉面包烘焙品質(zhì)試驗 直接發(fā)酵法》專題研究報告
- 《GB 4706.40-2008家用和類似用途電器的安全 商用多用途電平鍋的特殊要求》專題研究報告
- 2025年殘疾人服務(wù)工作總結(jié)及2026年工作規(guī)劃
- 道德經(jīng)介紹課件
- 2023云南省醫(yī)療機構(gòu)超藥品說明書適應(yīng)證用藥專家共識解讀
- 新高一化學(xué)暑假銜接(人教版):第16講 原子結(jié)構(gòu)和元素周期表【教師版】
- 南寧陳教練2026年版考試大綱廣西專升本與職教高考(財經(jīng)商貿(mào)大類)考試大綱對比分析及備考攻略
- 滅菌物品裝載課件
- 2025至2030中國電力設(shè)備檢測行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
- 2025上半年軟考系統(tǒng)架構(gòu)設(shè)計師考試真題及答案
- 尾礦綜合利用技術(shù)在生態(tài)環(huán)境保護中的應(yīng)用與經(jīng)濟效益分析報告
- 政務(wù)信息化統(tǒng)一建設(shè)項目監(jiān)理服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 2025年蘇州市事業(yè)單位招聘考試教師招聘體育學(xué)科專業(yè)知識試卷
- 加油站投訴處理培訓(xùn)課件
- 畢業(yè)設(shè)計(論文)-基于PLC的醫(yī)院病房呼叫系統(tǒng)設(shè)計
- 外出黨員屬地管理制度
- 買賣合同爭議仲裁應(yīng)訴答辯書范本
評論
0/150
提交評論