廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第1頁(yè)
廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第2頁(yè)
廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第3頁(yè)
廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第4頁(yè)
廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西田陽(yáng)高中2026屆數(shù)學(xué)高二上期末檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線,則拋物線的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C. D.2.雙曲線的離心率的取值范圍為,則實(shí)數(shù)的取值范圍為()A. B.C. D.3.已知雙曲線的兩個(gè)頂點(diǎn)分別為A、B,點(diǎn)P為雙曲線上除A、B外任意一點(diǎn),且點(diǎn)P與點(diǎn)A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.34.記為等差數(shù)列的前n項(xiàng)和,有下列四個(gè)等式,甲:;乙:;丙:;?。海绻挥幸粋€(gè)等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁5.在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是()A.相交 B.平行C.垂直 D.不能確定6.如圖,A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.7.在空間直角坐標(biāo)系下,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為()A. B.C. D.8.已知呈線性相關(guān)的變量x與y的部分?jǐn)?shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.79.已知點(diǎn)分別為圓與圓的任意一點(diǎn),則的取值范圍是()A. B.C. D.10.已知,,,若、、三個(gè)向量共面,則實(shí)數(shù)A3 B.5C.7 D.911.直線經(jīng)過(guò)兩點(diǎn),那么其斜率為()A. B.C. D.12.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項(xiàng)與第10,11項(xiàng)的和為68,則數(shù)列的通項(xiàng)公式是________.14.已知內(nèi)角A,B,C的對(duì)邊為a,b,c,已知,且,則c的最小值為_(kāi)_________.15.已知向量,,且,則實(shí)數(shù)______.16.萬(wàn)眾矚目的北京冬奧會(huì)將于2022年2月4日正式開(kāi)幕,繼2008年北京奧運(yùn)會(huì)之后,國(guó)家體育場(chǎng)(又名鳥(niǎo)巢)將再次承辦奧運(yùn)會(huì)開(kāi)幕式.在手工課上,王老師帶領(lǐng)同學(xué)們一起制作了一個(gè)近似鳥(niǎo)巢的金屬模型,其俯視圖可近似看成是兩個(gè)大小不同、扁平程度相同的橢圓.已知大橢圓的長(zhǎng)軸長(zhǎng)為40cm,短軸長(zhǎng)為20cm,小橢圓的短軸長(zhǎng)為10cm,則小橢圓的長(zhǎng)軸長(zhǎng)為_(kāi)_______cm.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知橢圓的短軸端點(diǎn)為、,且,橢圓C的離心率,點(diǎn),過(guò)點(diǎn)P的動(dòng)直線l橢圓C交于不同的兩點(diǎn)M、N與,均不重合),連接,,交于點(diǎn)T(1)求橢圓C的方程;(2)求證:當(dāng)直線l繞點(diǎn)P旋轉(zhuǎn)時(shí),點(diǎn)T總在一條定直線上運(yùn)動(dòng);(3)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由18.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點(diǎn)是線段上的動(dòng)點(diǎn)(1)證明:;(2)設(shè)平面與平面的夾角為,求的最小值19.(12分)已知為等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和,,,,在①;②;③.這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則按選擇的第一個(gè)解答計(jì)分)(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.20.(12分)已知等差數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,用符號(hào)表示不超過(guò)x的最大數(shù),當(dāng)時(shí),求的值.21.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值22.(10分)已知命題p:函數(shù)有零點(diǎn);命題,(1)若命題p,q均為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.故選:D.2、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.3、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因?yàn)?,所以,所以,則故選:C.4、D【解析】分別假設(shè)甲、乙、丙、丁不成立,驗(yàn)證得到答案【詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時(shí)與②矛盾;A錯(cuò),若乙不成立,則,由①,③可得,此時(shí);與②矛盾;B錯(cuò),若丙不成立,則,由①,③可得,此時(shí);與②矛盾;C錯(cuò),若丁不成立,則,由①,③可得,此時(shí);,D對(duì),故選:D.5、B【解析】建立空間直角坐標(biāo)系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標(biāo)系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有利于空間向量判斷線面平行,屬于簡(jiǎn)單題目.6、B【解析】根據(jù)向量的線性運(yùn)算,將向量表示為,再根據(jù)向量的數(shù)量積的運(yùn)算進(jìn)行計(jì)算可得答案,【詳解】因?yàn)?,所?,故選:B.7、C【解析】根據(jù)空間坐標(biāo)系中點(diǎn)的對(duì)稱關(guān)系求解【詳解】點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為,故選:C8、A【解析】根據(jù)回歸直線過(guò)樣本點(diǎn)的中心進(jìn)行求解即可.【詳解】由題意可得,,則,解得故選:A.9、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.10、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個(gè)向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題11、B【解析】由兩點(diǎn)的斜率公式可得答案.【詳解】直線經(jīng)過(guò)兩點(diǎn),則故選:B12、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因?yàn)橹本€:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本量結(jié)合已知列方程組求解即可.【詳解】設(shè)等差數(shù)列的公差為由題可知即因?yàn)椋越獾茫核?故答案為:14、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時(shí),即,最小,且為由正弦定理得:,當(dāng)時(shí),c的最小值為故答案為:【點(diǎn)睛】方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到.15、【解析】利用向量平行的條件直接解出.【詳解】因?yàn)橄蛄?,,且,所以,解?故答案為:.16、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長(zhǎng)軸長(zhǎng)【詳解】在大橢圓中,,,則,.因?yàn)閮蓹E圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結(jié)合,得,所以小橢圓的長(zhǎng)軸長(zhǎng)為20.故填:20.【點(diǎn)睛】本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,對(duì)橢圓相似則離心率相等這一基礎(chǔ)知識(shí)的考查三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析;(3)不存在直線l,使得成立,理由見(jiàn)解析.【解析】(1)根據(jù)題意,列出方程組,求得,即可求得橢圓的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,設(shè),根據(jù)和在同一條直線上,列出方程求得的值,即可求解;(3)設(shè)直線的為,把轉(zhuǎn)化為,聯(lián)立方程組求得,代入列方程,求得,即可得到結(jié)論.【小問(wèn)1詳解】解:由題意可得,解得,所以所求橢圓的方程為.【小問(wèn)2詳解】解:由題意,因?yàn)橹本€過(guò)點(diǎn),可設(shè)直線的方程為,,聯(lián)立方程組,整理得,可得,因?yàn)橹本€與橢圓有兩個(gè)交點(diǎn),所以,解得,設(shè),因?yàn)樵谕粭l直線上,則,①又由在同一條直線上,則,②由①+②3所以,整理得,解得,所以點(diǎn)在直線,即當(dāng)直線l繞點(diǎn)P旋轉(zhuǎn)時(shí),點(diǎn)T總在一條定直線上運(yùn)動(dòng).【小問(wèn)3詳解】解:由(2)知,點(diǎn)在直線上運(yùn)動(dòng),即,設(shè)直線的方程為,且,又由且,可得,即,聯(lián)立方程組,整理得,可得,代入可得,解得,即,此時(shí)直線的斜率不存在,不合題意,所以不存在直線l,使得成立.18、(1)證明見(jiàn)解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系寫出點(diǎn)與點(diǎn)的坐標(biāo)由于軸,可設(shè),可得出與的坐標(biāo)設(shè)為平面的法向量,求出法向量.是關(guān)于的一個(gè)式子,求出的取值范圍,即可求出的最小值【小問(wèn)1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因?yàn)?,所以又因?yàn)槠矫嫫矫妫矫嫫矫?,,所以平面又平面,所以又因?yàn)?,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因?yàn)?,,所以,所以又,,平面所以平面又平面,所以【小?wèn)2詳解】以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系則,因?yàn)檩S,可設(shè),可求得,設(shè)為平面的法向量則令,解得,所以又因?yàn)槭瞧矫娴姆ㄏ蛄克?,因?yàn)?,所以所以?dāng)時(shí),取到最小值19、(1)無(wú)論選擇哪個(gè)條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問(wèn)1詳解】設(shè)的公差為,因?yàn)椋?;所以,解得,所?選①:設(shè)的公比為,則;由題意得,因?yàn)?,所以,解得或(舍);所?選②:由,當(dāng)時(shí),,因?yàn)?,所以;?dāng)時(shí),,整理得;即是首項(xiàng)和公比均為2的等比數(shù)列,所以.選③:因?yàn)?,,所以,解得;所?【小問(wèn)2詳解】由(1)得;所以.20、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項(xiàng)和公差,然后利用等差數(shù)列的通項(xiàng)公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項(xiàng)相消法和分組求和法求出,進(jìn)而可求出的通項(xiàng)公式,最后利用等差數(shù)列求和公式求解即可.【小問(wèn)1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項(xiàng)公式為.【小問(wèn)2詳解】由題意可知,,所以,故,因?yàn)楫?dāng)時(shí),;當(dāng)時(shí),,所以,由可知,,即,解得,即值為9.21、(1)證明見(jiàn)解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定和線面角的求法,解題的關(guān)鍵是通過(guò)過(guò)點(diǎn)作,交直線于點(diǎn),連接,然后結(jié)合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計(jì)算能力,屬于中檔題22、(1);(2).【解析】(1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論