2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題含解析_第1頁
2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題含解析_第2頁
2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題含解析_第3頁
2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題含解析_第4頁
2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆湖南省瀏陽一中、株洲二中等湘東六校數(shù)學高三上期末學業(yè)質量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.2.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.53.若滿足,且目標函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.64.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種5.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.6.函數(shù)的大致圖象為A. B.C. D.7.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.88.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.69.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.命題“”的否定是()A. B.C. D.11.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3312.若直線與曲線相切,則()A.3 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的系數(shù)之和為1024,則展開式常數(shù)項的值等于_______.14.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.15.若存在直線l與函數(shù)及的圖象都相切,則實數(shù)的最小值為___________.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.18.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.19.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.20.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)已知的三個內角所對的邊分別為,向量,,且.(1)求角的大?。唬?)若,求的值22.(10分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.2、A【解析】

根據(jù)條件將問題轉化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.3、A【解析】

作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.4、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎題.5、B【解析】

列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.6、A【解析】

因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.7、C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.8、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.9、C【解析】

根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.10、D【解析】

根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.11、C【解析】

依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.12、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用展開式所有項系數(shù)的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.【詳解】因為的二項展開式中,所有項的系數(shù)之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應用、二項式系數(shù)的性質,二項式展開式的通項公式,屬于中檔題.14、①②③【解析】

①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.15、【解析】

設直線l與函數(shù)及的圖象分別相切于,,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為存在直線l與函數(shù)及的圖象都相切,所以,所以,令,設,則,當時,,函數(shù)單調遞減;當時,,函數(shù)單調遞增,所以,所以實數(shù)的最小值為.16、【解析】

由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.18、(1);(2).【解析】

(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【點睛】本題考查橢圓標準方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題19、(Ⅰ)或.(Ⅱ)【解析】

(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調遞減,在單調遞增,當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.20、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯(lián)立,消元并整理得,設,,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計算,設.顯然,構造,由導數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯(lián)立,得即設,,則,將直線:與聯(lián)立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設而不求”的思想方法,即設交點坐標為,設直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結論,本題屬于難題,對學生的邏輯推理、運算求解能力有一定的要求.21、(1)(2)【解析】

利用平面向量數(shù)量積的坐標表示和二倍角的余弦公式得到關于的方程,解方程即可求解;由知,在中利用余弦定理得到關于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因為,所以,解得或,∵,∴.在中,由余弦定理得,即①又因為,把代入①整理得,,解得,,所以為等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論