版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆云南省曲靖市麒麟高中高二上數(shù)學(xué)期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,若,,則外接圓半徑為()A. B.C. D.2.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種3.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項(xiàng)和為,若對于任意的,,不等式恒成立,則實(shí)數(shù)t的取值范圍為()A. B.C. D.4.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.5.已知直線經(jīng)過點(diǎn),且是的方向向量,則點(diǎn)到的距離為()A. B.C. D.6.如圖,面積為的正方形中有一個(gè)不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長為,的面積為,并向正方形中隨機(jī)投擲個(gè)點(diǎn),用以上方法估計(jì)的面積時(shí),的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率為附表:A. B.C. D.7.已知{an}是以10為首項(xiàng),-3為公差的等差數(shù)列,則當(dāng){an}的前n項(xiàng)和Sn,取得最大值時(shí),n=()A.3 B.4C.5 D.68.若空間中n個(gè)不同的點(diǎn)兩兩距離都相等,則正整數(shù)n的取值A(chǔ).至多等于3 B.至多等于4C.等于5 D.大于59.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.410.函數(shù)的圖像大致是()A. B.C. D.11.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個(gè)問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14412.等比數(shù)列的公比,中有連續(xù)四項(xiàng)在集合中,則等于()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項(xiàng)的系數(shù)是,則正整數(shù)______________.14.點(diǎn)為橢圓上的一動(dòng)點(diǎn),則點(diǎn)到直線的距離的最小值為___________.15.若不同的平面的一個(gè)法向量分別為,,則與的位置關(guān)系為___________.16.已知、是橢圓()長軸的兩個(gè)端點(diǎn),、是橢圓上關(guān)于軸對稱的兩點(diǎn),直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,,為的中點(diǎn),點(diǎn),分別在棱,上,,.(1)求點(diǎn)到直線的距離(2)求平面與平面夾角的余弦值.18.(12分)已知命題p:點(diǎn)在橢圓內(nèi);命題q:函數(shù)在R上單調(diào)遞增(1)若p為真命題,求m的取值范圍;(2)若為假命題,求實(shí)數(shù)m的取值范圍19.(12分)平面直角坐標(biāo)系xOy中,點(diǎn),,點(diǎn)M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點(diǎn),若,求.20.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),,為自然對數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大?。唬?)計(jì)算,,,由此推測計(jì)算的公式,并給出證明;21.(12分)如圖,在平行四邊形ABCD中,AB=1,BC=2,∠ABC=60°,四邊形ACEF為正方形,且平面ABCD⊥平面ACEF(1)證明:AB⊥CF;(2)求點(diǎn)C到平面BEF距離;(3)求平面BEF與平面ADF夾角的正弦值22.(10分)已知橢圓的上頂點(diǎn)在直線上,點(diǎn)在橢圓上.(1)求橢圓C的方程;(2)點(diǎn)P,Q在橢圓C上,且,,點(diǎn)G為垂足,是否存在定圓恒經(jīng)過A,G兩點(diǎn),若存在,求出圓的方程;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A2、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.3、B【解析】由等差數(shù)列基本量法求出通項(xiàng)公式,用裂項(xiàng)相消法求得,求出的最大值,然后利用關(guān)于的不等式是一次不等式列出滿足的不等關(guān)系求得其范圍【詳解】設(shè)等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點(diǎn)睛】本題考查求等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的和,考查不等式恒成立問題,解題關(guān)鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立4、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因?yàn)楹瘮?shù)在某點(diǎn)處的導(dǎo)數(shù)值表示的是此點(diǎn)處切線的斜率,所以由圖可得,故選:C5、B【解析】求出,根據(jù)點(diǎn)到直線的距離的向量公式進(jìn)行求解.【詳解】因?yàn)?,為的一個(gè)方向向量,所以點(diǎn)到直線的距離.故選:B6、D【解析】每個(gè)點(diǎn)落入中的概率為,設(shè)落入中的點(diǎn)的數(shù)目為,題意所求概率為故選D7、B【解析】由題可得當(dāng)時(shí),,當(dāng)時(shí),,即得.【詳解】∵{an}是以10為首項(xiàng),-3為公差的等差數(shù)列,∴,故當(dāng)時(shí),,當(dāng)時(shí),,故時(shí),取得最大值故選:B.8、B【解析】先考慮平面上的情況:只有三個(gè)點(diǎn)的情況成立;再考慮空間里,只有四個(gè)點(diǎn)的情況成立,注意運(yùn)用外接球和三角形三邊的關(guān)系,即可判斷解:考慮平面上,3個(gè)點(diǎn)兩兩距離相等,構(gòu)成等邊三角形,成立;4個(gè)點(diǎn)兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個(gè)點(diǎn)兩兩距離相等,構(gòu)成一個(gè)正四面體,成立;若n>4,由于任三點(diǎn)不共線,當(dāng)n=5時(shí),考慮四個(gè)點(diǎn)構(gòu)成的正四面體,第五個(gè)點(diǎn),與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點(diǎn)評:本題考查空間幾何體的特征,主要考查空間兩點(diǎn)的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關(guān)系,屬于中檔題和易錯(cuò)題9、A【解析】利用正態(tài)分布的對稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對稱性可知:故選:A10、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時(shí),,∴在上單調(diào)遞增,當(dāng)時(shí),,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B11、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A12、C【解析】經(jīng)分析可得,等比數(shù)列各項(xiàng)的絕對值單調(diào)遞增,將五個(gè)數(shù)按絕對值的大小排列,計(jì)算相鄰兩項(xiàng)的比值,根據(jù)等比數(shù)列的定義即可求解.【詳解】因?yàn)榈缺葦?shù)列中有連續(xù)四項(xiàng)在集合中,所以中既有正數(shù)項(xiàng)也有負(fù)數(shù)項(xiàng),所以公比,因?yàn)椋?,且?fù)數(shù)項(xiàng)為相隔兩項(xiàng),所以等比數(shù)列各項(xiàng)的絕對值單調(diào)遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項(xiàng),所以,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由已知二項(xiàng)式可得展開式通項(xiàng)為,根據(jù)已知條件有,即可求出值.詳解】由題設(shè),,∴,則且為正整數(shù),解得.故答案為:4.14、【解析】設(shè)與平行的直線與相切,求解出此時(shí)的方程,則點(diǎn)到直線距離的最大值可根據(jù)平行直線間的距離公式求解出.【詳解】設(shè)與平行的直線,當(dāng)與橢圓相切時(shí)有:,所以,所以,所以,由題意取時(shí),到直線的距離較小此時(shí)與(即)的距離為,所以點(diǎn)到直線距離的最小值為,故答案為:.15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個(gè)法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、【解析】設(shè)出點(diǎn),,,的坐標(biāo),表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當(dāng)且僅當(dāng),即時(shí)等號成立,是橢圓長軸的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對稱的兩點(diǎn),,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長,應(yīng)用余弦定理求,進(jìn)而可得其正弦值,再求邊上的高即可.(2)以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,然后求出兩個(gè)平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設(shè),,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系易知:,,,則,因?yàn)槠矫?,所以平面的一個(gè)法向量為設(shè)平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為18、(1)(2)【解析】(1)根據(jù)題意列不等式組求解(2)判斷的真假性后分別求解【小問1詳解】由題意得,解得且故m的取值范圍是【小問2詳解】∵為假命題,∴p和q都是真命題,對于命題q,由題意得:恒成立,∴,∴,∴,解得故m的取值范圍是19、(1)C是以點(diǎn),為左右焦點(diǎn)的橢圓,(2)【解析】(1)根據(jù)橢圓的定義即可得到答案.(2)當(dāng)垂直于軸時(shí),,舍去.當(dāng)不垂直于軸時(shí),可設(shè),再根據(jù)題意結(jié)合韋達(dá)定理求解即可.【小問1詳解】因?yàn)?,,所以C是以點(diǎn),為左右焦點(diǎn)的橢圓.于是,,故,因此C的方程為.【小問2詳解】當(dāng)垂直于軸時(shí),,,舍去.當(dāng)不垂直于軸時(shí),可設(shè),代入可得.因?yàn)?,設(shè),,則,.因?yàn)?,所?同理.因此.由可得,,于是.根據(jù)橢圓定義可知,于是.20、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導(dǎo)數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數(shù)學(xué)歸納法證明即可.【小問1詳解】的定義域?yàn)?,?dāng),即時(shí),單調(diào)遞增;當(dāng),即時(shí),單調(diào)遞減故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng)時(shí),,即令,得,即【小問2詳解】;;由此推測:①下面用數(shù)學(xué)歸納法證明①(1)當(dāng)時(shí),左邊右邊,①成立(2)假設(shè)當(dāng)時(shí),①成立,即當(dāng)時(shí),,由歸納假設(shè)可得所以當(dāng)時(shí),①也成立根據(jù)(1)(2),可知①對一切正整數(shù)都成立21、(1)證明見解析;(2);(3).【解析】(1)利用余弦定理計(jì)算AC,再證明即可推理作答.(2)以點(diǎn)A為原點(diǎn),射線AB,AC,AF分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,借助空間向量計(jì)算點(diǎn)C到平面BEF的距離.(3)利用(2)中坐標(biāo)系,用向量數(shù)量積計(jì)算兩平面夾角余弦值,進(jìn)而求解作答.小問1詳解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,則,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小問2詳解】因四邊形ACEF為正方形,即,由(1)知兩兩垂直,以點(diǎn)A為原點(diǎn),射線AB,AC,AF分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,,,設(shè)平面的一個(gè)法向量,則,令,得,而,于是得點(diǎn)C到平面BEF的距離,所以點(diǎn)C到平面BEF的距離為.【小問3詳解】由(2)知,,設(shè)平面的一個(gè)法向量,則,令,得,,設(shè)平面BEF與平面ADF夾角為,,則有,,所以平面BEF與平面ADF夾角的正弦值為.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:空間向量求二面角時(shí),一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運(yùn)算,要認(rèn)真細(xì)心,準(zhǔn)確計(jì)算22、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達(dá)定理及條件可得直線恒過定點(diǎn),則以為直徑的圓適合題意,即得.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年牧原養(yǎng)殖人才測評試題及答案
- 機(jī)電工程管理與實(shí)務(wù)二級建造師考試試題與參考答案(2025年)
- 齊齊哈爾市安全培訓(xùn)班課件
- 技術(shù)方案2026年保密協(xié)議
- 照明設(shè)計(jì)效果圖制作方案
- 醫(yī)學(xué)人文與溝通:外科甲狀腺溝通課件
- 管網(wǎng)改造施工人員安全教育方案
- 城鎮(zhèn)老舊供水管網(wǎng)改造工程施工方案
- 2026屆福建省莆田市仙游縣郊尾中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析
- 2026年東莞證券股份有限公司江門江海證券營業(yè)部招聘備考題庫及參考答案詳解
- 2025年國家開放大學(xué)《電子政務(wù)概論》期末考試備考題庫及答案解析
- 醫(yī)療器械使用與維護(hù)常見問題匯編
- 中國資產(chǎn)托管行業(yè)發(fā)展報(bào)告2025
- 聯(lián)合培養(yǎng)研究生協(xié)議
- 虛擬電廠課件
- 部隊(duì)核生化防護(hù)基礎(chǔ)課件
- 醫(yī)療器械胰島素泵市場可行性分析報(bào)告
- 2025年《處方管理辦法》培訓(xùn)考核試題(附答案)
- 租金催繳管理辦法
- 種植業(yè)合作社賬務(wù)處理
- JJF 2266-2025血液融漿機(jī)校準(zhǔn)規(guī)范
評論
0/150
提交評論