黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第1頁
黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第2頁
黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第3頁
黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第4頁
黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省雞西市一中2026屆數(shù)學高二上期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在各項均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.782.的展開式中的系數(shù)是()A.1792 B.C.448 D.3.若的解集是,則等于()A.-14 B.-6C.6 D.144.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.5.設α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么6.在矩形中,,在該矩形內任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.7.函數(shù)極小值為()A. B.C. D.8.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.9.已知為虛數(shù)單位,復數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.10.已知直線l:的傾斜角為,則()A. B.1C. D.-111.已知圓:的面積被直線平分,圓:,則圓與圓的位置關系是()A.相離 B.相交C.內切 D.外切12.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知雙曲線的左,右焦點分別為,,過且與圓相切的直線與雙曲線的一條漸近線相交于點(點在第一象限),若,則雙曲線的離心率___________.14.已知為拋物線上任意一點,為拋物線的焦點,為平面內一定點,則的最小值為__________.15.函數(shù)滿足,且,則的最小值為___________.16.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.18.(12分)已知等比數(shù)列前3項和為(1)求的通項公式;(2)若對任意恒成立,求m的取值范圍19.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標準方程;(2)過作一條不與坐標軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當變化時,是否為定值?若是,定值為多少?20.(12分)如圖1,在四邊形ABCD中,,,E是AD的中點,將沿BF折起至的位置,使得二面角的大小為120°(如圖2),M,N分別是,的中點.(1)證明:平面;(2)求平面與平面夾角的余弦值.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上22.(10分)設等比數(shù)列的前項和為,且()(1)求數(shù)列的通項公式;(2)在與之間插入個實數(shù),使這個數(shù)依次組成公差為的等差數(shù)列,設數(shù)列的前項和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由等比數(shù)列的性質直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質可得:由,解得:;由可得:,所以.故選:D2、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D3、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.4、A【解析】由條件建立a,b,c的關系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.5、C【解析】AB.利用兩平面的位置關系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C6、D【解析】利用幾何概型的概率公式,轉化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D7、A【解析】利用導數(shù)分析函數(shù)的單調性,可求得該函數(shù)的極小值.【詳解】對函數(shù)求導得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.8、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A9、D【解析】先設,代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設,所以,因為為純虛數(shù),所以,解得,所以的虛部為:.故選:D.10、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因為直線l的傾斜角為,所以斜率.所以,解得:.故選:A11、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標準方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.12、B【解析】由已知條件得出,結合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設切點,根據(jù),可得,在中,利用余弦定理構造齊次式,從而可得出答案.【詳解】解:設切點,由,∴,∵為中點,則為中位線,∴,,中,,,,∴.故答案為:2.14、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.15、6【解析】化簡得出,由化簡后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當且僅當時取等號),所以的最小值為6.故答案為:616、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,設平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因為平面,所以,平面,,所以,直線到平面的距離為.18、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項和公比,再求通項公式;(2)由題意轉化為求數(shù)列的前項和的最大值,即可求參數(shù)的取值范圍.【小問1詳解】設等比數(shù)列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問2詳解】由(1)可知,數(shù)列是首項為2,公比為的等比數(shù)列,,若對任意恒成立,即,數(shù)列,,單調遞增,的最大值無限趨近于4,所以19、(1)(2)是,【解析】(1)由拋物線方程求出其焦點坐標,結合橢圓的幾何性質列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標為(1,0),,又,又,∴,橢圓的標準方程為.【小問2詳解】設直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1)證明見解析(2)【解析】(1)構造中位線,利用面面平行,可以證明;(2)建立空間直角坐標系,用空間向量的方法即可.【小問1詳解】證明:如圖,取ED的中點P,連接MP,NP.在平行四邊形ABCD中,因為E是AD的中點,,所以,又,所以四邊形BCDE是平行四邊形;因為M,N分別是,BC的中點,所以,.又平面,平面,所以平面,平面.因為,所以平面平面.又平面,所以平面【小問2詳解】取BE的中點O,連接,CO,CE.在圖1中,因為,所以是等邊三角形,,又四邊形ABCD等腰梯形,所以,即是等邊三角形;所以如圖,,,所以.以為原點,射線OB為x軸的正半軸建立如圖所示的空間直角坐標系.因為,則,,,,則,設平面的法向量為,,得令,則,,即,由題可知,平面BCD的一個法向量為,.由圖可知,平面與平面BDC夾角余弦值為;21、(1)證明見解析;(2)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論