版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆赤峰市重點中學高二上數(shù)學期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,則()A. B.1C.2 D.42.已知直線,橢圓.若直線l與橢圓C交于A,B兩點,則線段AB的中點的坐標為()A. B.C. D.3.已知拋物線,過點作拋物線的兩條切線,點為切點.若的面積不大于,則的取值范圍是()A. B.C. D.4.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.5.如圖,兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.6.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.7.和的等差中項與等比中項分別為()A., B.2,C., D.1,8.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.9.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.10.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形11.的展開式中的系數(shù)是()A. B.C. D.12.若函數(shù)f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則_____________14.沈陽市某高中有高一學生600人,高二學生500人,高三學生550人,現(xiàn)對學生關(guān)于消防安全知識了解情況進行分層抽樣調(diào)查,若抽取了一個容量為n的樣本,其中高三學生有11人,則n的值等于________.15.已知焦點為F的拋物線的方程為,點Q的坐標為,點P在拋物線上,則點P到y(tǒng)軸的距離與到點Q的距離的和的最小值為______.16.已知函數(shù)f(x)=x3-3x2+2,則函數(shù)f(x)的極大值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實根.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍18.(12分)已知圓,點.(1)若,半徑為的圓過點,且與圓相外切,求圓的方程;(2)若過點的兩條直線被圓截得的弦長均為,且與軸分別交于點、,,求.19.(12分)某快遞公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)在這60天中包裹件數(shù)在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應(yīng)分別抽取多少件?20.(12分)在等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求數(shù)列{an}的通項公式an;(2)求數(shù)列的前n項和Sn的最大值及相應(yīng)的n值21.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點,求二面角的余弦值.22.(10分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當為何值時,最大,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B2、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達定理可得,進而得出中點的橫坐標,代入直線方程求出中點的縱坐標即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點中點的橫坐標為:,所以中點的縱坐標為:,即線段AB的中點的坐標為.故選:B3、C【解析】由題意,設(shè),直線方程為,則由點到直線的距離公式求出點到直線的距離,再聯(lián)立直線與拋物線方程,由韋達定理及弦長公式求出,進而可得,結(jié)合即可得答案.【詳解】解:因為拋物線的性質(zhì):在拋物線上任意一點處的切線方程為,設(shè),所以在點處的切線方程為,在點B處的切線方程為,因為兩條切線都經(jīng)過點,所以,,所以直線的方程為,即,點到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.4、A【解析】恰好為拋物線的焦點,等于到準線的距離,要想最小,過圓心作拋物線的準線的垂線交拋物線于點,交圓于,最小值等于圓心到準線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;5、C【解析】設(shè)D為線段AB的中點,求得,在中,可得.進而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.6、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A7、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.8、C【解析】如圖由題可得,進而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.9、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B10、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.11、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B12、C【解析】若f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則f'(x)=x2-ax+1在區(qū)間內(nèi)有零點,且零點不是f'(x)的圖象頂點的橫坐標.由x2-ax+1=0,得a=x+.因為x∈,y=x+的值域是,當a=2時,f'(x)=x2-2x+1=(x-1)2,不合題意.所以實數(shù)a的取值范圍是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】找到數(shù)列的規(guī)律,由此求得.【詳解】依題意,,,所以數(shù)列是以為周期的周期數(shù)列,.故答案為:14、33【解析】根據(jù)分層抽樣的性質(zhì)進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學生有11人,所以有,故答案為:3315、##【解析】利用定義將所求距離之和的最小值問題,轉(zhuǎn)化為的最小值問題.【詳解】焦點F坐標為,拋物線準線為,如圖,作垂直于準線于A,交y軸于B,.故答案為:16、2【解析】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,從而得到極大值.【詳解】,令,解得:,00極大值極小值所以當時,函數(shù)取得極大值,即函數(shù)的極大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.18、(1)或(2)【解析】(1)設(shè)圓心,根據(jù)已知條件可得出關(guān)于、的方程組,解出、的值,即可得出圓的方程;(2)分析可知直線、的斜率存在,設(shè)過點且斜率存在的直線的方程為,即,利用勾股定理可得出,可知直線、的斜率、是關(guān)于的二次方程的兩根,求出、的坐標,結(jié)合韋達定理可求得的值.【小問1詳解】解:設(shè)圓心,圓的圓心為,由題意可得,解得或,因此,圓的方程為或.【小問2詳解】解:若過點的直線斜率不存在,則該直線的方程為,圓心到直線的距離為,不合乎題意.設(shè)過點且斜率存在的直線的方程為,即,由題意可得,整理可得,設(shè)直線、的斜率分別為、,則、為關(guān)于的二次方程的兩根,,由韋達定理可得,,在直線的方程中,令,可得,即點在直線的方程中,令,可得,即點,所以,,解得.19、(1)平均數(shù)和中位數(shù)都為260件;(2)在的件數(shù)為,在的件數(shù)為.【解析】(1)由每組頻率乘以組中值相加即可得平均數(shù),設(shè)中位數(shù)為,由落在區(qū)間內(nèi)的頻率為0.5可得結(jié)果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結(jié)果.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;設(shè)中位數(shù)為,易知,則,解得.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)件數(shù)在,的頻率分別為0.1,0.5頻率之比為1:5,所抽取的30件中,在的件數(shù)為,在的件數(shù)為.20、(1);(2)當或11時,最大值為55.【解析】(1)根據(jù)等差數(shù)列的通項公式得方程組,解這個方程組得公差和首項,從而得數(shù)列的通項公式n.(2)等差數(shù)列的前項和是關(guān)于的二次式,將這個二次式配方即可得最大值.【詳解】(1)由題設(shè),故(舍,此時)或.故,故.(2)由(1)可得,因為,對稱方程為,故當或時,取最大值,此時最大值為.21、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標原點,建立空間直角坐標系,從而求出相關(guān)的點的坐標,進而求得相關(guān)向量的坐標,再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點,連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年江蘇安全技術(shù)職業(yè)學院單招職業(yè)適應(yīng)性測試模擬測試卷附答案
- 2026年大冶電工理論考試試題及答案(易錯題)
- 2026年威海職業(yè)學院單招職業(yè)適應(yīng)性考試題庫及答案1套
- 2026年心理健康素養(yǎng)考試題庫及參考答案一套
- 2026年電工基礎(chǔ)知識測試題完整參考答案
- 2026四川阿壩州阿壩縣國有資產(chǎn)管理中心招聘阿壩文商旅發(fā)展有限公司總經(jīng)理1人筆試模擬試題及答案解析
- 2026國新新格局(北京)私募證券基金管理有限公司相關(guān)崗位招聘1人筆試備考題庫及答案解析
- 2026重慶奉節(jié)縣竹園鎮(zhèn)人民政府全日制公益性崗位招聘5人筆試備考題庫及答案解析
- 2025廣西百色政協(xié)西林縣委員會辦公室招聘編外聘用人員4人(公共基礎(chǔ)知識)綜合能力測試題附答案
- 2025年河南豫能控股股份有限公司及所管企業(yè)第二批社會招聘18模擬試卷附答案
- 認知障礙老人的護理課件
- 麻醉科業(yè)務(wù)學習課件
- 綠色低碳微晶材料制造暨煤矸石工業(yè)固廢循環(huán)利用示范產(chǎn)業(yè)園環(huán)境影響報告表
- 2025吉林檢驗專升本試題及答案
- 軍人婚戀觀教育
- 硫化氫(CAS號:7783-06-4)理化性質(zhì)與危險特性一覽表
- QHBTL01-2022 熱力入口裝置
- 計算機應(yīng)用專業(yè)發(fā)展規(guī)劃
- 結(jié)算審核實施方案
- 企業(yè)管理的基礎(chǔ)工作包括哪些內(nèi)容
評論
0/150
提交評論