2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆云南省曲靖市富源六中高二上數(shù)學(xué)期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.2.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導(dǎo)函數(shù),則=A. B.C. D.3.設(shè)雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標(biāo)原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.4.已知雙曲線:的左、右焦點分別為,,且,點是的右支上一點,且,,則雙曲線的方程為()A. B.C. D.5.已知關(guān)于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.6.若拋物線的焦點與橢圓的左焦點重合,則m的值為()A.4 B.-4C.2 D.-27.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結(jié)論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題8.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心9.函數(shù)在上的最小值為()A. B.4C. D.10.“,”的否定是A., B.,C., D.,11.已知,若是函數(shù)一個零點,則的值為()A.0 B.C.1 D.12.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標(biāo)滿足不等式的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.14.已知直線與直線平行,則實數(shù)______15.已知拋物線的焦點為,點在上,且,則______16.?dāng)?shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標(biāo);(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點18.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值19.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值20.(12分)已知橢圓.離心率為,點與橢圓的左、右頂點可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標(biāo)原點直線的斜率之積等于,試探求的面積是否為定值,并說明理由21.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項22.(10分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為Sn,且成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應(yīng)用,屬于中等題.2、D【解析】由歸納推理可知偶函數(shù)的導(dǎo)數(shù)是奇函數(shù),因為是偶函數(shù),則是奇函數(shù),所以,應(yīng)選答案D3、A【解析】由給定條件寫出點A,F(xiàn)坐標(biāo),設(shè)出點B的坐標(biāo),求出線段FC的中點坐標(biāo),由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設(shè),由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A4、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點,設(shè),,因為,所以,因為,所以,則,因為點是的右支上一點,所以,所以,則,因為,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B5、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關(guān)系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價于,解得或.故選:A.6、B【解析】根據(jù)拋物線和橢圓焦點與其各自標(biāo)準(zhǔn)方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點為,橢圓左焦點為,∴.故選:B.7、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A8、B【解析】利用三角形面積公式,推出點O到三邊距離相等?!驹斀狻坑淈cO到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B9、D【解析】求出導(dǎo)數(shù),由導(dǎo)數(shù)確定函數(shù)在上的單調(diào)性與極值,可得最小值【詳解】,所以時,,遞減,時,,遞增,所以是在上的唯一極值點,極小值也是最小值.故選:D10、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎(chǔ)題.11、A【解析】首先根據(jù)題意求出,然后設(shè)函數(shù),利用以及的單調(diào)性,并結(jié)合對數(shù)運算即可求解.【詳解】由題意可知,,所以,不妨設(shè),(),故,從而,易知在上單調(diào)遞增,故,即,從而.故選:A.12、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)14、【解析】分類討論,兩種情況,結(jié)合直線平行的知識得出實數(shù).【詳解】當(dāng)時,直線與直線垂直;當(dāng)時,,則且,解得.故答案為:15、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準(zhǔn)線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.16、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因為故故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標(biāo);(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標(biāo)為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當(dāng)時,,所以直線過定點18、(1);(2).【解析】(1)先對函數(shù)求導(dǎo),根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導(dǎo)數(shù)的方法研究其單調(diào)性,進而可求出最值.【詳解】(1)因為,所以,又函數(shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調(diào)遞增,在上單調(diào)遞減,因此【點睛】方法點睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的問題,解題方法如下:(1)先對函數(shù)求導(dǎo),根據(jù)題意,結(jié)合函數(shù)在某個點處取得極值,導(dǎo)數(shù)為0,函數(shù)值為極值,列出方程組,求得結(jié)果;(2)將所求參數(shù)代入,得到解析式,利用導(dǎo)數(shù)研究其單調(diào)性,得到其最大值.19、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標(biāo)系,則,,,因為分別為的中點,所以.所以,.設(shè)平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.20、(1);(2)是定值,理由見解析.【解析】(1)由題意有,點與橢圓的左、右頂點可以構(gòu)成等腰直角三角形有,即可寫出橢圓方程;(2)直線與橢圓交于兩點,聯(lián)立方程結(jié)合韋達定理即有,已知應(yīng)用點線距離公式、三角形面積公式即可說明的面積是否為定值;【詳解】(1)橢圓離心率為,即,∵點與橢圓的左、右頂點可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點,聯(lián)立方程:,整理得,設(shè),則,,,,原點到的距離,為定值;【點睛】本題考查了由離心率求橢圓方程,根據(jù)直線與橢圓的相交關(guān)系證明交點與原點構(gòu)成的三角形面積是否為定值的問題.21、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質(zhì)即可求出的值;(2)求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論