2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣西貴港市港南中學高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.設.若,則=()A. B.C. D.e3.直線經(jīng)過兩個定點,,則直線傾斜角大小是()A. B.C. D.4.已知圓C的方程為,點P在圓C上,O是坐標原點,則的最小值為()A.3 B.C. D.5.已知矩形,為平面外一點,且平面,,分別為,上的點,且,,,則()A. B.C.1 D.6.若,則()A. B.C. D.7.已知,,則的最小值為()A. B.C. D.8.已知函數(shù)f(x)的定義域為[-1,5],其部分自變量與函數(shù)值的對應情況如下表:x-10245f(x)312.513f(x)的導函數(shù)的圖象如圖所示.給出下列四個結(jié)論:①f(x)在區(qū)間[-1,0]上單調(diào)遞增;②f(x)有2個極大值點;③f(x)的值域為[1,3];④如果x∈[t,5]時,f(x)的最小值是1,那么t的最大值為4其中,所有正確結(jié)論的序號是()A.③ B.①④C.②③ D.③④9.已知函數(shù),則()A.3 B.C. D.10.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.611.拋物線上的一點到其焦點的距離等于()A. B.C. D.12.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量X服從正態(tài)分布,若,則______14.經(jīng)過點,的直線的傾斜角為___________.15.曲線在點處的切線方程為_____________.16.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經(jīng)過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設橢圓C的上頂點為P,設不經(jīng)過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點18.(12分)為讓“雙減”工作落實到位,某中學積極響應上級號召,全面推進中小學生課后延時服務,推行課后服務“”模式,開展了內(nèi)容豐富、形式多樣、有利于學生身心成長的活動.該中學初一共有700名學生其中男生400名、女生300名.為讓課后服務更受歡迎,該校準備推行體育類與藝術類兩大類活動于2021年9月在初一學生中進行了問卷調(diào)查.(1)調(diào)查結(jié)果顯示:有的男學生和的女學生愿意參加體育類活動,其他男學生與女學生都不愿意參加體育類活動,請完成下邊列聯(lián)表.并判斷是否有的把握認為愿意參加體育類活動與學生的性別相關?愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學生女學生合計(2)在開展了兩個月活動課后,為了了解學生的活動課情況,在初一年級學生中按男女比例分層抽取7名學生調(diào)查情況,并從這7名學生中隨機選擇3名學生進行展示,用X表示選出進行展示的3名學生中女學生的人數(shù),求隨機變量X的分布列和數(shù)學期望.0.1000.0500.0250.0102.7063.8415.0246.635參考公式:,其中.19.(12分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.20.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分21.(12分)已知橢圓:經(jīng)過點,設右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.22.(10分)物聯(lián)網(wǎng)(Internetofthings)是一個基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能夠被獨立尋址的普通物理對象實現(xiàn)互聯(lián)互通的網(wǎng)絡,具有十分廣闊的市場前景.現(xiàn)有一家物流公司計劃租地建造倉庫存儲貨物,經(jīng)過市場調(diào)查了解到下列信息:倉庫每月土地占地費(單位:萬元)與倉庫到車站的距離x(單位:千米)之間的關系為,每月庫存貨物費(單位:萬元)與x之間的關系為:;若在距離車站11.5千米建倉庫,則和分別為4萬元和23萬元.(1)求的值;(2)這家公司應該把倉庫建在距離車站多少千米處,才能使兩項費用之和最???最小費用是多少?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.2、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.3、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A4、B【解析】化簡判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點P時最小,再計算求值即得結(jié)果.【詳解】化簡得圓C的標準方程為,故圓心是,半徑,則連接線段OC,交圓于點P時最小,因為原點到圓心的距離,故此時.故選:B.5、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因為,,所以所以,因為,所以,所以,故選:B6、D【解析】設,計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設由已知可得,,因此,.故選:D.7、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.8、D【解析】直接利用函數(shù)的導函數(shù)的圖像,進一步畫出函數(shù)的圖像,進一步利用函數(shù)的性質(zhì)的應用求出函數(shù)的單調(diào)區(qū)間,函數(shù)的極值和端點值可得結(jié)論【詳解】解:由f(x)的導函數(shù)的圖像,畫出的圖像,如圖所示,對于①,在區(qū)間上單調(diào)遞減,所以①錯誤,對于②,有1個極大值點,2個極小值點,所以②錯誤,對于③,根據(jù)函數(shù)的極值和端點值可知的值域為,所以③正確,對于④,如果x∈[t,5]時,由圖像可知,當f(x)的最小值是1時,t的最大值為4,所以④正確,故選:D9、B【解析】由導數(shù)運算法則求出導發(fā)函數(shù),然后可得導數(shù)值【詳解】由題意,所以故選:B10、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B11、C【解析】由點的坐標求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C12、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.14、【解析】根據(jù)兩點間斜率公式得到斜率,再根據(jù)斜率確定傾斜角大小即可.【詳解】根據(jù)兩點間斜率公式得:,所以直線的傾斜角為:.故答案為:15、【解析】求導,求出切線斜率,進而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:16、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項由,求得公差即可.(2)由(1)得到,再利用裂項相消法求解.【詳解】(1)設數(shù)列的公差為d,因為,且,,成等比數(shù)列,所以,即,解得或(舍去),所以數(shù)列的通項公式;(2)由(1)知:,所以.【點睛】方法點睛:求數(shù)列的前n項和的方法(1)公式法:①等差數(shù)列的前n項和公式,②等比數(shù)列的前n項和公式;(2)分組轉(zhuǎn)化法:把數(shù)列的每一項分成兩項或幾項,使其轉(zhuǎn)化為幾個等差、等比數(shù)列,再求解(3)裂項相消法:把數(shù)列的通項拆成兩項之差求和,正負相消剩下首尾若干項(4)倒序相加法:把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導過程的推廣(5)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列對應項之積構(gòu)成的,則這個數(shù)列的前n項和用錯位相減法求解.(6)并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設橢圓的方程為代入點的坐標求出橢圓的方程,再利用點差法求解;(2)由題得直線的斜率存在,設直線的方程為,聯(lián)立直線和橢圓的方程得韋達定理,根據(jù)和韋達定理得到,即得證.【小問1詳解】解:由題設橢圓的方程為因為橢圓經(jīng)過點,所以所以橢圓的方程為.設,所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當直線的斜率不存在時,不符合題意;當直線的斜率存在時,設直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設,,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點18、(1)詳見解析;(2)詳見解析.【解析】(1)根據(jù)初一男生數(shù)和女生數(shù),結(jié)合有的男學生和的女學生,愿意參加體育類活動求解;計算的值,再與臨界值表對照下結(jié)論;(2)根據(jù)這7名學生中男生有4名,女生有3名,隨機選擇3名由抽到女學生的人數(shù)X可能為0,1,2,3,分別求得其概率,列出分布列,再求期望.【小問1詳解】解:因為初一共有700名學生其中男生400名、女生300名,且有的男學生和的女學生,所以愿意參加體育類活動的男生有300名,女生有200名,則列聯(lián)表如下:愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學生300100400女學生200100300合計500200700,所以有的把握認為愿意參加體育類活動與學生的性別相關;【小問2詳解】這7名學生中男生有4名,女生有3名,隨機選擇3名學生進行展示,抽到女學生的人數(shù)X可能為0,1,2,3,所以,,所以隨機變量X分布列如下:X0123p19、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設雙曲線的標準方程為,易知,設,,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設,,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設雙曲線的標準方程為,由題意知,點,的橫坐標分別為,,則設點,的坐標為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數(shù));點在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當時,,當時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉(zhuǎn)任意坐標系上的雙曲線的交點,旋轉(zhuǎn)直角坐標系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.20、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進行比較即可;(2)根據(jù)點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論