安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁(yè)
安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁(yè)
安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁(yè)
安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁(yè)
安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省霍邱一中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.42.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實(shí)數(shù)m的值為()A.5 B.6C.7 D.83.記等比數(shù)列的前項(xiàng)和為,若,,則()A.12 B.18C.21 D.274.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B.0C.6 D.85.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.6.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.7.如果雙曲線的一條漸近線方程為,且經(jīng)過(guò)點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.8.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.49.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的“中國(guó)剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1610.在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,過(guò)且垂直于軸的直線與交于,兩點(diǎn),與軸交于點(diǎn),,則的離心率為()A. B.C. D.11.下列問(wèn)題中是古典概型的是A.種下一粒楊樹種子,求其能長(zhǎng)成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5概率D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率12.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.33二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.14.一個(gè)物體的運(yùn)動(dòng)方程為其中位移的單位是米,時(shí)間的單位是秒,那么物體在秒末的瞬時(shí)速度是__________米/秒15.已知、均為正實(shí)數(shù),且,則的最小值為___________.16.已知數(shù)列的前項(xiàng)和.則數(shù)列的通項(xiàng)公式為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點(diǎn).(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.18.(12分)設(shè)函數(shù).(1)若在點(diǎn)處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.19.(12分)如圖,在四棱錐中,底面,,,,,為上一點(diǎn),且.請(qǐng)用空間向量知識(shí)解答下列問(wèn)題:(1)求證:平面;(2)求平面與平面夾角的大小.20.(12分)設(shè)P是拋物線上一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn).(1)若點(diǎn)P到直線距離為,求的最小值;(2)若,求的最小值.21.(12分)中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a22.(10分)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在拋物線C:上,點(diǎn)F為拋物線C的焦點(diǎn),記P到直線的距離為d,且.(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)的直線l與拋物線C相切,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項(xiàng)系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當(dāng)且僅當(dāng)取等號(hào),所以的最小值為4.故答案為:4.【點(diǎn)睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運(yùn)用不等式的性質(zhì)降低元的個(gè)數(shù),運(yùn)用均值不等式,是中檔題.2、B【解析】求出樣本的中心點(diǎn),再利用回歸直線必過(guò)樣本的中心點(diǎn)計(jì)算作答.【詳解】依題意,,則這個(gè)樣本的中心點(diǎn)為,因此,,解得,所以實(shí)數(shù)m的值為6.故選:B3、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項(xiàng)性質(zhì)即可求出結(jié)果.【詳解】因?yàn)闉榈缺葦?shù)列的前項(xiàng)和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C4、C【解析】畫出可行域,利用幾何意義求出目標(biāo)函數(shù)最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值.故選:C5、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D6、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過(guò)點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)?,所以橢圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.7、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點(diǎn)代入,進(jìn)而求得答案.【詳解】因?yàn)殡p曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.8、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因?yàn)槟繕?biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過(guò)時(shí)截距取得最小值,即取得最大值,所以的最大值為,故選:A.9、C【解析】根據(jù)“中國(guó)剩余定理”,進(jìn)而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個(gè)判斷框,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)為2.輸出的i值為13.故選:C.10、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長(zhǎng),結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點(diǎn),則為的中點(diǎn),又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B11、D【解析】A、B兩項(xiàng)中的基本事件的發(fā)生不是等可能的;C項(xiàng)中基本事件的個(gè)數(shù)是無(wú)限多個(gè);D項(xiàng)中基本事件的發(fā)生是等可能的,且是有限個(gè).故選D【考點(diǎn)】古典概型的判斷12、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:14、5【解析】,15、【解析】由基本不等式可得出關(guān)于的不等式,即可解得的最小值.【詳解】因、均為正實(shí)數(shù),由基本不等式可得,整理可得,,,則,解得,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,故的最小值為.故答案為:.16、【解析】根據(jù)公式求解即可.【詳解】解:當(dāng)時(shí),當(dāng)時(shí),因?yàn)橐策m合此等式,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo);(1)用向量的坐標(biāo)運(yùn)算證明向量共面,進(jìn)而證明點(diǎn)共面;(2)利用向量的數(shù)量積的坐標(biāo)運(yùn)算證明,即可;(3)確定平面EFGHKL的一個(gè)法向量,利用空間角度的向量計(jì)算公式求得答案.【小問(wèn)1詳解】證明:以D為原點(diǎn),分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過(guò)同一點(diǎn)E,所以E,F(xiàn),G,H,K,L共面.【小問(wèn)2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問(wèn)3詳解】由(2)知,是平面EFGHKL的一個(gè)法向量,設(shè)與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.18、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導(dǎo),切點(diǎn)在曲線,切點(diǎn)在切線,切點(diǎn)處的導(dǎo)數(shù)值為切線斜率.(2)第一步定義域,第二步求導(dǎo),第三步令導(dǎo)數(shù)大于或小于0,求解析,即可得到答案.【小問(wèn)1詳解】的定義域?yàn)?,,因?yàn)樵邳c(diǎn)處的切線為,所以,所以;所以把點(diǎn)代入得:.即a,b的值為:,.【小問(wèn)2詳解】由(1)知:.①當(dāng)時(shí),在上恒成立,所以在單調(diào)遞減;②當(dāng)時(shí),令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時(shí),的遞減區(qū)間為,單增區(qū)間為.綜上所述:當(dāng)時(shí),在單調(diào)遞減;當(dāng)時(shí),的遞減區(qū)間為,單增區(qū)間為.【點(diǎn)睛】導(dǎo)函數(shù)中得切線問(wèn)題第一步求導(dǎo),第二步列切點(diǎn)在曲線,切點(diǎn)在切線,切點(diǎn)處的導(dǎo)數(shù)值為切線斜率這三個(gè)方程,可解切線相關(guān)問(wèn)題.19、(1)證明見解析(2)【解析】(1)以為原點(diǎn),、、分別為軸、軸、軸建立空間直角坐標(biāo)系,證明出,,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問(wèn)1詳解】證明:底面,,故以為原點(diǎn),、、分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問(wèn)2詳解】解:知,,,設(shè)平面的法向量為,則,,即,令,可得,設(shè)平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.20、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問(wèn)題問(wèn)題轉(zhuǎn)化為求的最小值,即求.(2)判斷點(diǎn)B在拋物線的內(nèi)部,過(guò)B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn),利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點(diǎn)為,準(zhǔn)線方程為.由已知及拋物線的定義,可知,于是問(wèn)題轉(zhuǎn)化為求的最小值.由平面幾何知識(shí)知,當(dāng)F,P,A三點(diǎn)共線時(shí),取得最小值,最小值為,即的最小值為.(2)把點(diǎn)B的橫坐標(biāo)代入中,得,因?yàn)?,所以點(diǎn)B在拋物線的內(nèi)部.過(guò)B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn)(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點(diǎn)睛】本題考查了拋物線的定義,理解定義是解題的關(guān)鍵,屬于基礎(chǔ)題.21、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡(jiǎn)即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問(wèn)1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問(wèn)2詳解】∵,∴,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論