2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第1頁
2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第2頁
2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第3頁
2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第4頁
2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆海南省文昌僑中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64002.參加抗疫的300名醫(yī)務(wù)人員,編號為1,2,…,300.為了解這300名醫(yī)務(wù)人員的年齡情況,現(xiàn)用系統(tǒng)抽樣的方法從中抽取15名醫(yī)務(wù)人員的年齡進(jìn)行調(diào)查.若抽到的第一個(gè)編號為6,則抽到的第二個(gè)編號為()A.21 B.26C.31 D.363.下列各式正確的是()A. B.C. D.4.如圖,在平行六面體中,AC與BD的交點(diǎn)為O,點(diǎn)M在上,且,則下列向量中與相等的向量是()A. B.C. D.5.在數(shù)列中,已知,則“”是“是單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.()A.-2 B.0C.2 D.37.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.59.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定10.已知隨機(jī)變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.271811.直線過點(diǎn)且與雙曲線僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條12.如圖,在正方體中,點(diǎn),分別是面對角線與的中點(diǎn),若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______14.已知點(diǎn)是橢圓上任意一點(diǎn),則點(diǎn)到直線距離的最小值為______15.函數(shù),若,則的值等于_______16.曲線圍成的圖形的面積是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若函數(shù)與的圖象有一條與直線平行的公共切線,求實(shí)數(shù)a的值18.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.19.(12分)已知為各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列前n項(xiàng)和.20.(12分)設(shè)四邊形為矩形,點(diǎn)為平面外一點(diǎn),且平面,若,.(1)求與平面所成角的大??;(2)在邊上是否存在一點(diǎn),使得點(diǎn)到平面的距離為,若存在,求出的值,若不存在,請說明理由;(3)若點(diǎn)是的中點(diǎn),在內(nèi)確定一點(diǎn),使的值最小,并求此時(shí)的值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:存在最大值,且恒成立.22.(10分)如圖,在四棱錐中,,,,,為中點(diǎn),且平面.(1)求點(diǎn)到平面的距離;(2)線段上是否存在一點(diǎn),使平面?如果不存在,請說明理由;如果存在,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】解:∵一個(gè)公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時(shí),中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時(shí),中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項(xiàng).2、B【解析】將300個(gè)數(shù)編號:001,002,003,,3000,再平均分為15個(gè)小組,然后按系統(tǒng)抽樣方法得解.【詳解】將300個(gè)數(shù)編號:001,002,003,,3000,再平均分為15個(gè)小組,則第一編號為006,第二個(gè)編號為.故選:B.3、C【解析】利用導(dǎo)數(shù)的四則運(yùn)算即可求解.【詳解】對于A,,故A錯(cuò)誤;對于B,,故B錯(cuò)誤;對于C,,故C正確;對于D,,故D錯(cuò)誤;故選:C4、D【解析】根據(jù)平行六面體的幾何特點(diǎn),結(jié)合空間向量的線性運(yùn)算,即可求得結(jié)果.【詳解】因?yàn)槠叫辛骟w中,點(diǎn)M在上,且故可得故選:D.5、C【解析】分別求出當(dāng)、“是單調(diào)遞增數(shù)列”時(shí)實(shí)數(shù)的取值范圍,利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】已知,若,即,解得.若數(shù)列是單調(diào)遞增數(shù)列,對任意的,,即,所以,對任意的恒成立,故,因此,“”是“是單調(diào)遞增數(shù)列”充要條件.故選:C.6、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C7、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.8、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時(shí),弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長最短,,弦長=.故選:C.9、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)椋?,所以,所以的形狀為鈍角三角形.故選:C10、C【解析】根據(jù)正態(tài)分布的對稱性可求概率.【詳解】由題設(shè)可得,,故選:C.11、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個(gè)易錯(cuò)點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】由空間向量運(yùn)算法則得,利用向量的線性運(yùn)算求出結(jié)果.【詳解】因?yàn)辄c(diǎn),分別是面對角線與的中點(diǎn),,,,所以故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過點(diǎn)O且與CD垂直的直線為y軸,以過點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:14、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點(diǎn)到直線的最小值.【詳解】設(shè)與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.15、【解析】對函數(shù)進(jìn)行求導(dǎo),把代入導(dǎo)函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.16、【解析】當(dāng),時(shí),已知方程是,即.它對應(yīng)的曲線是第一象限內(nèi)半圓?。òǘ它c(diǎn)),它的圓心為,半徑為.同理,當(dāng),;,;,時(shí)對應(yīng)的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、或3【解析】設(shè)出切點(diǎn),先求和平行且和函數(shù)相切的切線,再將切線和聯(lián)立,求出的值.【詳解】設(shè)公共切線曲線上的切點(diǎn)坐標(biāo)為,根據(jù)題意,得公共切線的斜率,所以,所以與函數(shù)的圖像相切的切點(diǎn)坐標(biāo)為,故可求出公共切線方程為由直線和函數(shù)的圖像也相切,得方程,即關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,所以,解得或318、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進(jìn)一步求得面積【小問1詳解】因?yàn)?,由正弦定理得因?yàn)?,所?因?yàn)榻菫殁g角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=19、(1);(2).【解析】(1)先通過等比數(shù)列的基本量運(yùn)算求出公比,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,然后根據(jù)錯(cuò)位相減法求得答案.【小問1詳解】設(shè)等比數(shù)列公比為q,,,,(負(fù)值舍去),所以.【小問2詳解】,,所以,解得:.20、(1)(2)存在,距離為(3)位置答案見解析,【解析】(1)利用線面垂直的判定定理證明平面,然后由線面角的定義得到PC與平面PAD所成的角為,在中,由邊角關(guān)系求解即可.(2)假設(shè)BC邊上存在一點(diǎn)G滿足題設(shè)條件,不放設(shè),則,再根據(jù)得,進(jìn)而得答案.(3)延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',利用三點(diǎn)共線,兩線段和最小,得到,過H作于H',連結(jié)HB,在中,求解HB即可.【小問1詳解】解:因?yàn)槠矫妫矫?,所以,又因?yàn)榈酌媸蔷匦?,所以,又平面,所以平面,故與平面所成的角為,因?yàn)?,,所以故直線PC與平面PAD所成角的大小為;【小問2詳解】解:假設(shè)BC邊上存在一點(diǎn)G滿足題設(shè)條件,不妨設(shè),則因?yàn)槠矫?,到平面的距離為所以,即因?yàn)榇霐?shù)據(jù)解得,即,故存在點(diǎn)G,當(dāng)時(shí),使得點(diǎn)D到平面PAG的距離為;【小問3詳解】解:延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',則,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號成立,故,過H作于H',連結(jié)HB,在中,,,所以.21、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時(shí),定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時(shí),,當(dāng)時(shí),,以及極值點(diǎn)與2的大小關(guān)系可得出當(dāng)時(shí),函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時(shí),定義域R因?yàn)?,?dāng)時(shí),,當(dāng)時(shí),,所以的最大值在時(shí)取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時(shí),,且,由所以當(dāng)時(shí),函數(shù)有最大值.所以,因?yàn)?,所?設(shè),則所以化為由,則,則,所以所以22、(1)(2)線段上存在一點(diǎn),當(dāng)時(shí),平面.【解析】(1)設(shè)點(diǎn)到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點(diǎn)作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論