版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河南省鶴壁市淇縣第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,,則()A.1 B.2C.3 D.42.用斜二測(cè)畫法畫出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.3.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對(duì)立事件 B.與互斥C與相等 D.4.已知橢圓,則它的短軸長(zhǎng)為()A.2 B.4C.6 D.85.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B.C. D.6.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長(zhǎng)為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.7.雙曲線:的漸近線與圓:在第一、二象限分別交于點(diǎn)、,若點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.C. D.8.已知函數(shù),若對(duì)任意,都有成立,則a的取值范圍為()A. B.C. D.9.金剛石的成分為純碳,是自然界中天然存在的最堅(jiān)硬物質(zhì),它的結(jié)構(gòu)是由8個(gè)等邊三角形組成的正八面體.若某金剛石的棱長(zhǎng)為2,則它的體積為()A. B.C. D.10.“圓”是中國(guó)文化的一個(gè)重要精神元素,在中式建筑中有著廣泛的運(yùn)用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動(dòng)高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m11.拋擲一枚質(zhì)地均勻的骰子兩次,記{兩次的點(diǎn)數(shù)均為奇數(shù)},{兩次的點(diǎn)數(shù)之和為8},則()A. B.C. D.12.雙曲線的焦點(diǎn)到漸近線的距離為()A.1 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的前項(xiàng)和為,若,,則______.14.已知直線:與直線:平行,則的值為_(kāi)__________.15.雙曲線上一點(diǎn)P到的距離最小值為_(kāi)__________.16.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為_(kāi)_________________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過(guò)橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.18.(12分)如圖,在四棱錐中,底面,,,,,為上一點(diǎn),且.請(qǐng)用空間向量知識(shí)解答下列問(wèn)題:(1)求證:平面;(2)求平面與平面夾角的大小.19.(12分)2020年3月20日,中共中央、國(guó)務(wù)院印發(fā)了《關(guān)于全面加強(qiáng)新時(shí)代大中小學(xué)勞動(dòng)教育的意見(jiàn)》(以下簡(jiǎn)稱《意見(jiàn)》),《意見(jiàn)》中確定了勞動(dòng)教育內(nèi)容要求,要求普通高中要注重圍繞豐富職業(yè)體驗(yàn),開(kāi)展服務(wù)性勞動(dòng)、參加生產(chǎn)勞動(dòng),使學(xué)生熟練掌握一定勞動(dòng)技能,理解勞動(dòng)創(chuàng)造價(jià)值,具有勞動(dòng)自立意識(shí)和主動(dòng)服務(wù)他人、服務(wù)社會(huì)的情懷.我市某中學(xué)鼓勵(lì)學(xué)生暑假期間多參加社會(huì)公益勞動(dòng),在實(shí)踐中讓學(xué)生利用所學(xué)知識(shí)技能,服務(wù)他人和社會(huì),強(qiáng)化社會(huì)責(zé)任感,為了調(diào)查學(xué)生參加公益勞動(dòng)的情況,學(xué)校從全體學(xué)生中隨機(jī)抽取100名學(xué)生,經(jīng)統(tǒng)計(jì)得到他們參加公益勞動(dòng)的總時(shí)間均在15~65小時(shí)內(nèi),其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)(同一組中的每一個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);(2)學(xué)校要在參加公益勞動(dòng)總時(shí)間在、這兩組的學(xué)生中用分層抽樣的方法選取5人進(jìn)行感受交流,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行感受分享,求這2人來(lái)自不同組的概率20.(12分)立德中學(xué)舉行冬令營(yíng)活動(dòng)期間,對(duì)位參加活動(dòng)的學(xué)生進(jìn)行了文化和體能測(cè)試,滿分為150分,其測(cè)試成績(jī)都在90分和150分之間,成績(jī)?cè)谡J(rèn)定為“一般”,成績(jī)?cè)谡J(rèn)定為“良好”,成績(jī)?cè)谡J(rèn)定為“優(yōu)秀”.成績(jī)統(tǒng)計(jì)人數(shù)如下表:體能文化一般良好優(yōu)秀一般0良好3優(yōu)秀2例如,表中體能成績(jī)良好且文化成績(jī)一般的學(xué)生有2人(1)若從這位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到文化或體能優(yōu)秀的學(xué)生概率為.求,的值;(2)在(1)的情況下,從體能成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求至少有一個(gè)人文化的成績(jī)?yōu)閮?yōu)秀的概率;(3)若讓使參加體能測(cè)試的成績(jī)方差最小,寫出的值.(直接寫出答案)21.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:的左,右頂點(diǎn)分別為A、B,點(diǎn)F是橢圓的右焦點(diǎn),,(1)求橢圓C的方程;(2)不過(guò)點(diǎn)A的直線l交橢圓C于M、N兩點(diǎn),記直線l、AM、AN的斜率分別為k、、.若,證明直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo)22.(10分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點(diǎn),,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計(jì)算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B2、A【解析】畫出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.3、D【解析】利用互斥事件和對(duì)立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對(duì)立,也不相等,,所以ABC錯(cuò)誤,D正確,故選:D4、B【解析】根據(jù)橢圓短軸長(zhǎng)的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,所以該橢圓的短軸長(zhǎng)為,故選:B5、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.6、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.7、B【解析】由,得點(diǎn)為三角形的重心,可得,即可求解.【詳解】如圖:設(shè)雙曲線的焦距為,與軸交于點(diǎn),由題可知,則,由,得點(diǎn)為三角形的重心,可得,即,,即,解得.故選:B【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.8、C【解析】求出函數(shù)的導(dǎo)數(shù),再對(duì)給定不等式等價(jià)變形,分離參數(shù)借助均值不等式計(jì)算作答.【詳解】對(duì)函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時(shí)“=”,于是得,解得,所以a的取值范圍為.故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問(wèn)題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問(wèn)題的關(guān)鍵.9、C【解析】由幾何關(guān)系先求出一個(gè)正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C10、B【解析】設(shè)半徑為R,根據(jù)垂徑定理可以列方程求解即可.【詳解】設(shè)半徑為R,,解得,化簡(jiǎn)得.故選:B.11、B【解析】利用條件概率公式進(jìn)行求解.【詳解】,其中表示:兩次點(diǎn)數(shù)均為奇數(shù),且兩次點(diǎn)數(shù)之和為8,共有兩種情況,即,故,而,所以,故選:B12、A【解析】分別求出雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程,利用點(diǎn)到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點(diǎn)坐標(biāo)為漸近線方程為:∴雙曲線的焦點(diǎn)到漸近線的距離故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.14、-1【解析】根據(jù)兩直線平行的條件列式求解即可.【詳解】由題意可知,的斜率,的斜率,∵,∴解得.故當(dāng)時(shí),直線:與直線:平行.故答案為:-1.15、2【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式結(jié)合二次函數(shù)求出最小值即可作答.【詳解】設(shè),則,即,于是得,而,則當(dāng)時(shí),,所以雙曲線上一點(diǎn)P到的距離最小值為2.故答案為:216、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問(wèn)1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問(wèn)2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.18、(1)證明見(jiàn)解析(2)【解析】(1)以為原點(diǎn),、、分別為軸、軸、軸建立空間直角坐標(biāo)系,證明出,,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問(wèn)1詳解】證明:底面,,故以為原點(diǎn),、、分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問(wèn)2詳解】解:知,,,設(shè)平面的法向量為,則,,即,令,可得,設(shè)平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.19、(1),;平均數(shù)為40.2;(2)【解析】(1)根據(jù)矩形面積和為1,求的值,再根據(jù)頻率分布直方圖求平均數(shù);(2)首先利用分層抽樣,在中抽取3人,在中抽取2人,再編號(hào),列舉基本事件,求概率,或者利用組合公式,求古典概型概率.詳解】(1)依題意,,故又因?yàn)?,所以,所求平均?shù)為(小時(shí))所以估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)為40.2(2)由頻率分布直方圖可知,參加公益勞動(dòng)總時(shí)間在和的學(xué)生比例為又由分層抽樣的方法從參加公益勞動(dòng)總時(shí)間在和的學(xué)生中隨機(jī)抽取5人,則在中抽取3人,分別記為,,,在中抽取2人,分別記為,,則從5人中隨機(jī)抽取2人基本事件有,,,,,,,,,這2人來(lái)自不同組的基本事件有:,,,,,,共6個(gè),所以所求的概率解法二:由頻率分布直方圖可知,參加公益勞動(dòng)總時(shí)間在和的學(xué)生比例為又由分層抽樣的方法從參加公益勞動(dòng)總時(shí)間在和的學(xué)生中隨機(jī)抽取5人,則在中抽取3人,在中抽取2人,則從5人中隨機(jī)抽取2人的基本事件總數(shù)為這2人來(lái)自不同組的基本事件數(shù)為所以所求的概率20、(1),;(2);(3).【解析】(1)由題設(shè)可得求參數(shù)a,結(jié)合表格數(shù)據(jù)及已知總學(xué)生人數(shù)求參數(shù)b.(2)應(yīng)用列舉法求古典概型的概率.(3)應(yīng)用表格數(shù)據(jù)及方差公式可得且,即可確定成績(jī)方差最小對(duì)應(yīng)的值.【小問(wèn)1詳解】設(shè)事件:從位學(xué)生中隨機(jī)抽取一位,抽到文化或體能優(yōu)秀的學(xué)生由題意知,體能或文化優(yōu)秀的學(xué)生共有人,則,解得所以;【小問(wèn)2詳解】體能成績(jī)?yōu)閮?yōu)秀的學(xué)生共有5人,在這5人中,文化成績(jī)一般的人記為;文化成績(jī)良好的人記為;文化成績(jī)優(yōu)秀的人記為從文化成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)抽取2人的樣本空間,設(shè)事件:至少有一個(gè)人文化的成績(jī)?yōu)閮?yōu)秀,,所以,體能成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,至少有一個(gè)人文化成績(jī)?yōu)閮?yōu)秀的概率是;【小問(wèn)3詳解】由題設(shè)知:體能測(cè)試成績(jī),{一般,良好,優(yōu)秀}人數(shù)分別為{5,,},對(duì)應(yīng)平均分為{100,120,140},所以體能測(cè)試平均成績(jī),所以,而所以當(dāng)時(shí)最小.21、(1);(2)證明見(jiàn)解析,(-5,0).【解析】(1)寫出A、B、F的坐標(biāo),求出向量坐標(biāo),根據(jù)向量的關(guān)系即可列出方程組,求得a、b、c和橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出,根據(jù)即可求得k和m的關(guān)系,即可證明直線過(guò)定點(diǎn)并求出該定點(diǎn).【小問(wèn)1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問(wèn)2詳解】設(shè)直線l的方程為y=kx+m,,∵直線l不過(guò)點(diǎn)A,因此-2k+m≠0由得時(shí),,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過(guò)定點(diǎn)(-5,0).22、(1)證明見(jiàn)解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因?yàn)椋俑鶕?jù)面面垂直的判定定理,即可證明結(jié)果
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 師德監(jiān)督員培訓(xùn)課件
- 遼寧省本溪市某校2025-22026學(xué)年高一上學(xué)期期末政治試卷
- 2026年欺詐騙保防范技巧培訓(xùn)
- 宣恩縣椿木營(yíng)鄉(xiāng)衛(wèi)生院2025年面向社會(huì)招聘工作人員備考題庫(kù)及答案詳解1套
- 天津市濱海新區(qū)2026年事業(yè)單位公開(kāi)招聘工作人員備考題庫(kù)及參考答案詳解1套
- 山南介紹教學(xué)課件
- 交通運(yùn)輸安全檢查與應(yīng)急處理指南(標(biāo)準(zhǔn)版)
- 2025年母嬰護(hù)理師行業(yè)競(jìng)爭(zhēng)格局與品牌建設(shè)策略報(bào)告
- 2025年教育機(jī)構(gòu)教學(xué)資源建設(shè)與應(yīng)用指南
- 2025年農(nóng)業(yè)科技行業(yè)創(chuàng)新報(bào)告及智能灌溉技術(shù)發(fā)展趨勢(shì)報(bào)告
- 名譽(yù)職務(wù)管理辦法
- 小兒支原體肺炎病例討論
- 勘察測(cè)繪安全管理辦法
- 2021-2022學(xué)年安徽省合肥市瑤海區(qū)八年級(jí)上學(xué)期期末數(shù)學(xué)試題及答案
- 基層治保會(huì)培訓(xùn)課件
- 軟件工程形形考作業(yè)3:基于UML的大學(xué)圖書館圖書信息管理系統(tǒng)設(shè)計(jì)實(shí)驗(yàn)
- 雙擁培訓(xùn)課件
- 化工企業(yè)安全責(zé)任協(xié)議
- 飛行營(yíng)地項(xiàng)目總體規(guī)劃
- 2025年高考第二次模擬考試化學(xué)(湖南卷)(考試版A3)
- 2025土地使用權(quán)轉(zhuǎn)讓合同范本
評(píng)論
0/150
提交評(píng)論