江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題含解析_第1頁
江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題含解析_第2頁
江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題含解析_第3頁
江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題含解析_第4頁
江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省新余市第六中學2026屆高一上數(shù)學期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.集合,集合,則等于()A. B.C. D.2.直線l的方程為Ax+By+C=0,當,時,直線l必經(jīng)過A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限3.若,則錯誤的是A. B.C. D.4.下列函數(shù)中,是奇函數(shù)且在區(qū)間上單調(diào)遞減的是()A. B.C. D.5.設集合A={-2,1},B={-1,2},定義集合AB={x|x=x1x2,x1∈A,x2∈B},則AB中所有元素之積A.-8B.-16C.8D.166.由直線上的點向圓作切線,則切線長的最小值為()A.1 B.C. D.37.O為正方體底面ABCD的中心,則直線與的夾角為A. B.C. D.8.一半徑為2m的水輪,水輪圓心O距離水面1m;已知水輪按逆時針做勻速轉(zhuǎn)動,每3秒轉(zhuǎn)一圈,且當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.如圖所示,建立直角坐標系,將點P距離水面的高度h(單位:m)表示為時間t(單位:s)的函數(shù),記,則()A.0 B.1C.3 D.49.命題“,”的否定是()A, B.,C., D.,10.某流行病調(diào)查中心的疾控人員針對該地區(qū)某類只在人與人之間相互傳染的疾病,通過現(xiàn)場調(diào)查與傳染源傳播途徑有關的蛛絲馬跡,根據(jù)傳播鏈及相關數(shù)據(jù),建立了與傳染源相關確診病例人數(shù)與傳染源感染后至隔離前時長t(單位:天)的模型:.已知甲傳染源感染后至隔離前時長為5天,與之相關確診病例人數(shù)為8;乙傳染源感染后至隔離前時長為8天,與之相關確診病例人數(shù)為20.若某傳染源感染后至隔離前時長為兩周,則與之相關確診病例人數(shù)約為()A.44 B.48C.80 D.125二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù),則____________.12.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.13.寫出一個同時具有下列性質(zhì)①②的函數(shù)______.(注:不是常數(shù)函數(shù))①;②.14.函數(shù)單調(diào)遞增區(qū)間為_____________15.在中,,,且在上,則線段的長為______16.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對弧長為____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知全集,求:(1);(2).18.已知函數(shù),圖象上兩相鄰對稱軸之間的距離為;_______________;(Ⅰ)在①的一條對稱軸;②的一個對稱中心;③的圖象經(jīng)過點這三個條件中任選一個補充在上面空白橫線中,然后確定函數(shù)的解析式;(Ⅱ)若動直線與和的圖象分別交于、兩點,求線段長度的最大值及此時的值.注:如果選擇多個條件分別解答,按第一個解答計分.19.已知函數(shù),且.(1)求的定義域;(2)判斷的奇偶性并予以證明;(3)當時,求使的的解集.20.已知一扇形的圓心角為,所在圓的半徑為.(1)若,求扇形的弧長及該弧所在的弓形的面積;(2)若扇形的周長是一定值,當為多少弧度時,該扇形有最大面積?21.(1)計算(2)已知,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】直接利用交集的定義求解即可.【詳解】由題得.故選:B2、A【解析】把直線方程化為斜截式,根據(jù)斜率以及直線在y軸上的截距的符號,判斷直線在坐標系中的位置【詳解】當A>0,B<0,C>0時,直線Ax+By+C=0,即y=﹣x﹣,故直線的斜率﹣>0,且直線在y軸上的截距﹣>0,故直線經(jīng)過第一、二、三象限,故選A【點睛】本題主要考查根據(jù)直線的斜截式方程判斷直線在坐標系中的位置,屬于基礎題3、D【解析】對于,由,則,故正確;對于,,故正確;對于,,故正確;對于,,故錯誤故選D4、C【解析】根據(jù)函數(shù)的單調(diào)性和奇偶性對各個選項逐一分析即可.【詳解】對A,函數(shù)的圖象關于軸對稱,故是偶函數(shù),故A錯誤;對B,函數(shù)的定義域為不關于原點對稱,故是非奇非偶函數(shù),故B錯誤;對C,函數(shù)的圖象關于原點對稱,故是奇函數(shù),且在上單調(diào)遞減,故C正確;對D,函數(shù)的圖象關于原點對稱,故是奇函數(shù),但在上單調(diào)遞增,故D錯誤.故選:C.5、C【解析】∵集合A={-2,1},B={-1,2},定義集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之積為:2×(-4)×(-1)=8故選C6、B【解析】先求圓心到直線的距離,此時切線長最小,由勾股定理不難求解切線長的最小值【詳解】切線長的最小值是當直線上的點與圓心距離最小時取得,圓心到直線的距離為,圓的半徑為1,故切線長的最小值為,故選:B【點睛】本題考查圓的切線方程,點到直線的距離,是基礎題7、D【解析】推導出A1C1⊥BD,A1C1⊥DD1,從而D1O?平面BDD1,由此得到A1C1⊥D1O【詳解】∵O為正方體ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O?平面BDD1,∴A1C1⊥D1O故答案為:D【點睛】本題考查與已知直線垂直的直線的判斷,是中檔題,做題時要認真審題,注意線面垂直的性質(zhì)的合理運用8、C【解析】根據(jù)題意設h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,寫出函數(shù)解析式,計算f(t)+f(t+1)+f(t+2)的值【詳解】根據(jù)題意,設h=f(t)=Asin(ωt+φ)+k,(φ<0),則A=2,k=1,因為T=3,所以ω,所以h=2sin(t+φ)+1,又因為t=0時,h=0,所以0=2sinφ+1,所以sinφ,又因為φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故選:C9、D【解析】利用全稱量詞命題的否定變換形式即可求解.【詳解】的否定是,的否定是,故“,”的否定是“,”,故選:D10、D【解析】根據(jù)求得,由此求得的值.【詳解】依題意得,,,所以.故若某傳染源感染后至隔離前時長為兩周,則相關確診病例人數(shù)約為125.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】依據(jù)分段函數(shù)定義去求的值即可.【詳解】由,可得,則由,可得故答案為:12、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎知識是關鍵.13、【解析】根據(jù)函數(shù)值以及函數(shù)的周期性進行列舉即可【詳解】由知函數(shù)的周期是,則滿足條件,,滿足條件,故答案為:(答案不唯一)14、【解析】先求出函數(shù)的定義域,再利用求復合函數(shù)單調(diào)區(qū)間的方法求解即得.【詳解】依題意,由得:或,即函數(shù)的定義域是,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而在上單調(diào)遞增,于是得在是單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故答案為:15、1【解析】∵,∴,∴,∵且在上,∴線段為的角平分線,∴,以A為原點,如圖建立平面直角坐標系,則,D∴故答案為116、【解析】解直角三角形AOC,求出半徑AO,代入弧長公式求出弧長的值解:如圖:設∠AOB=2,AB=2,過點0作OC⊥AB,C為垂足,并延長OC交于D,則∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,從而弧長為α×r=2×=,故答案為考點:弧長公式三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)求出集合,再根據(jù)集合間的基本運算即可求解;(2)求出,再根據(jù)集合間的基本運算即可求解.【詳解】解:(1)由,解得:,故,又,;(2)由(1)知:,或,或.18、(Ⅰ)選①或②或③,;(Ⅱ)當或時,線段的長取到最大值.【解析】(Ⅰ)先根據(jù)題中信息求出函數(shù)的最小正周期,進而得出.選①,根據(jù)題意得出,結合的取值范圍可求出的值,進而得出函數(shù)的解析式;選②,根據(jù)題意得出,結合的取值范圍可求出的值,進而得出函數(shù)的解析式;選③,根據(jù)題意得出,結合的取值范圍可求出的值,進而得出函數(shù)的解析式;(Ⅱ)令,利用三角恒等變換思想化簡函數(shù)的解析式,利用正弦型函數(shù)的基本性質(zhì)求出在上的最大值和最小值,由此可求得線段長度的最大值及此時的值.【詳解】(Ⅰ)由于函數(shù)圖象上兩相鄰對稱軸之間的距離為,則該函數(shù)的最小正周期為,,此時.若選①,則函數(shù)的一條對稱軸,則,得,,當時,,此時,;若選②,則函數(shù)的一個對稱中心,則,得,,當時,,此時,;若選③,則函數(shù)的圖象過點,則,得,,,,解得,此時,.綜上所述,;(Ⅱ)令,,,,當或時,即當或時,線段的長取到最大值.【點睛】本題考查利用三角函數(shù)的基本性質(zhì)求解析式,同時也考查了余弦型三角函數(shù)在區(qū)間上最值的計算,考查計算能力,屬于中等題.19、(1);(2)奇函數(shù),證明見解析;(3)【解析】(1)本題可通過求解得出結果;(2)本題可根據(jù)得出結果;(3)本題首先可判斷出當時在定義域內(nèi)是增函數(shù),然后通過得出,通過計算即可得出結果.【詳解】(1)因為,所以,解得,的定義域為.(2)的定義域為,,故是奇函數(shù).(3)因為當時,是增函數(shù),是減函數(shù),所以當時在定義域內(nèi)是增函數(shù),即,,,,,解得,故使的的解集為.20、(1);(2)見解析【解析】(1)根據(jù)弧長的公式和扇形的面積公式即可求扇形的弧長及該弧所在的弓形的面積;(2)根據(jù)扇形的面積公式,結合基本不等式即可得到結論【詳解】(1)設弧長為l,弓形面積為S弓,則α=90°=,R=10,l=×10=5π(cm),S弓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論