2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第1頁
2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第2頁
2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第3頁
2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第4頁
2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆福建省三明市A片區(qū)高中聯(lián)盟校數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.212.若,都為正實數(shù),,則的最大值是()A. B.C. D.3.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.4.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形5.楊輝三角是二項式系數(shù)在三角形中的一種幾何排列,在中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中就有出現(xiàn).在歐洲,帕斯卡(1623~1662)在1654年發(fā)現(xiàn)這一規(guī)律,比楊輝要遲了393年.如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則在該數(shù)列中,第37項是A.153 B.171C.190 D.2106.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.7.拋物線的準(zhǔn)線方程為,則實數(shù)的值為()A. B.C. D.8.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.9.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.10.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.11.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是12.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學(xué)裝置由有公共焦點的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為________14.函數(shù)在區(qū)間上的最小值為__________.15.已知拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,且該拋物線的準(zhǔn)線與雙曲線:的兩條漸近線所圍成的三角形面積為,則雙曲線的離心率為__________.16.歷史上第一個研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對稱軸:反之,平行于拋物線對稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點.已知拋物線,經(jīng)過點一束平行于C對稱軸的光線,經(jīng)C上點P反射后交C于點Q,則PQ的長度為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點,求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.18.(12分)如圖,四棱錐中,,,,平面,點F在線段上運動.(1)若平面,請確定點F的位置并說明理由;(2)若點F滿足,求平面與平面的夾角的余弦值.19.(12分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標(biāo)為2,求的長;(2)若交于,求的值20.(12分)四棱錐,底面為矩形,面,且,點在線段上,且面.(1)求線段的長;(2)對于(1)中的,求直線與面所成角的正弦值.21.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標(biāo)原點,過且不平行于坐標(biāo)軸的動直線與有兩個交點,,線段的中點為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.22.(10分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A2、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D3、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A4、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B5、C【解析】根據(jù)“楊輝三角”找出數(shù)列1,2,3,3,6,4,10,5,…之間的關(guān)系即可?!驹斀狻坑深}意可得從第3行起的每行第三個數(shù):,所以第行的第三個數(shù)為在該數(shù)列中,第37項為第21行第三個數(shù),所以該數(shù)列的第37項為故選:C【點睛】本題主要考查了歸納、推理的能力,屬于中等題。6、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.7、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B8、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C9、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.10、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B11、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.12、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##0.75【解析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:14、【解析】先對函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時取等號,即取等號,因為,所以函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,函數(shù)取得最小值0,故答案為:015、3【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C離心率.故答案為:3.16、####【解析】根據(jù)題意,求得點以及拋物線焦點的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點的坐標(biāo),即可求得.【詳解】因為經(jīng)過點一束平行于C對稱軸的光線交拋物線于點,故對,令,則可得,也即的坐標(biāo)為,又拋物線的焦點的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為5,最小值為;(3)答案見解析.【解析】(1)求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進(jìn)而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進(jìn)而求出函數(shù)的單調(diào)區(qū)間.【小問1詳解】當(dāng)時,,,切點坐標(biāo)為,,切線的斜率為,切線方程為,即.【小問2詳解】,是函數(shù)的極小值點,,即,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為,,函數(shù)在區(qū)間上的最大值為5,最小值為.【小問3詳解】函數(shù)的定義域為,,令得,.①當(dāng)時,,函數(shù)在R上單調(diào)遞增;②當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為;③當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為.綜上:時,,函數(shù)R上單調(diào)遞增;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.18、(1)F為BD的中點,證明見解析;(2).【解析】(1)由為的中點,取的中點,連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據(jù)題意可得平面ABC與平面AFC的夾角為二面角,取的中點H為坐標(biāo)原點,建立空間直角坐標(biāo)系,分別求得平面的一個法向量,平面的一個法向量,設(shè)二面角為,由求解.【小問1詳解】為的中點.如圖:取的中點,連接∵,分別為,的中點,∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點H為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系.因為三角形為等腰三角形,易求,則,,所以,,設(shè)平面的一個法向量為,則,即,解得設(shè)平面的一個法向量為,則,即,解得設(shè)二面角為,則,因為二面角為銳角,所以余弦值為.19、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結(jié)合梯形的中位線定理,可求得答案;(2)根據(jù)題意可求得直線AB的方程為y=x+4,聯(lián)立拋物線方程,得到根與系數(shù)的關(guān)系,由OA⊥OB,得,根據(jù)數(shù)量積的計算即可得答案.【小問1詳解】取AB的中點為E,當(dāng)p=2時,拋物線為C:x2=4y,焦點F坐標(biāo)為F(0,1),過A,E,B分別作準(zhǔn)線y=-1的垂線,重足分別為I,H,G,在梯形ABGI中(圖1),E是AB中點,則2EH=AI+BG,EH=2-(-1)=3,因為AB=AF+BF=AI+BG,所以AB=2EH=6.【小問2詳解】設(shè),由OD⊥AB交AB于D(-2,2),(圖2),得kOD=-1,kAB=1,則直線AB的方程為y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.20、(1)1(2)【解析】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論