版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省石家莊市普通高中2026屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“函數(shù)為偶函數(shù)”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知集合,,若,則的值為A.4 B.7C.9 D.103.將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象,若在上為增函數(shù),則的最大值為A B.C. D.4.下列函數(shù),其中既是偶函數(shù)又在區(qū)間上單調(diào)遞減的函數(shù)為A. B.C. D.5.若偶函數(shù)在定義域內(nèi)滿足,且當時,;則的零點的個數(shù)為()A.1 B.2C.9 D.186.黃金分割比例廣泛存在于許多藝術(shù)作品中.在三角形中,底與腰之比為黃金分割比的三角形被稱作黃金三角形,被認為是最美的三角形,它是兩底角為72°的等腰三角形.達芬奇的名作《蒙娜麗莎》中,在整個畫面里形成了一個黃金三角形.如圖,在黃金三角形中,,根據(jù)這些信息,可得()A. B.C. D.7.已知函數(shù)y=(12)x的圖象與函數(shù)y=logax(a>0,A.[?2C.[?88.設(shè)函數(shù),若對任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,則|x1﹣x2|的最小值是()A.4π B.2πC.π D.9.已知,則()A.-4 B.4C. D.10.將函數(shù)圖象上的點向右平移個單位長度后得到點,若點仍在函數(shù)的圖象上,則的最小值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),其中,,的圖象如圖所示,求的解析式____12.若函數(shù)f(x)=的定義域為R,則實數(shù)a的取值范圍是:_____________.13.當時,函數(shù)的值總大于,則的取值范圍是________14.已知函數(shù),那么_________.15.已知偶函數(shù)是區(qū)間上單調(diào)遞增,則滿足的取值集合是__________16.已知扇形的圓心角為,半徑為,則扇形的面積為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(Ⅰ)求證:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG18.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點M在y軸上,BC的中點N在x軸上(1)求點C的坐標;(2)求△ABC的面積19.已知函數(shù);(1)若,使得成立,求的集合(2)已知函數(shù)的圖象關(guān)于點對稱,當時,.若對使得成立,求實數(shù)的取值范圍20.已知集合,.(1)求,;(2)已知集合,若,求實數(shù)的取值范圍.21.已知函數(shù)(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)充分必要條件定義判斷【詳解】時,是偶函數(shù),充分性滿足,但時,也是偶函數(shù),必要性不滿足應(yīng)是充分不必要條件故選:A2、A【解析】可知,或,所以.故選A考點:交集的應(yīng)用3、B【解析】由題意可知,由在上為增函數(shù),得,選B.4、A【解析】分別考查函數(shù)的奇偶性和函數(shù)的單調(diào)性即可求得最終結(jié)果.【詳解】逐一考查所給的函數(shù)的性質(zhì):A.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞減;B.,函數(shù)為非奇非偶函數(shù),在區(qū)間上單調(diào)遞增;C.,函數(shù)為奇函數(shù),在區(qū)間上單調(diào)遞減;D.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞增;據(jù)此可得滿足題意的函數(shù)只有A選項.本題選擇A選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.5、D【解析】由題,的零點的個數(shù)即的交點個數(shù),再根據(jù)的對稱性和周期性畫出圖象,數(shù)形結(jié)合分析即可【詳解】由可知偶函數(shù)周期為2,故先畫出時,的函數(shù)圖象,再分別利用偶函數(shù)關(guān)于軸對稱、周期為2畫出的函數(shù)圖象,則的零點個數(shù)即為的零點個數(shù),即的交點個數(shù),易得在上有個交點,故在定義域內(nèi)有18個交點.故選:D6、B【解析】由題意,結(jié)合二倍角余弦公式、平方關(guān)系求得,再根據(jù)誘導(dǎo)公式即可求.【詳解】由題設(shè),可得,,所以,又,所以.故選:B7、D【解析】由已知中兩函數(shù)的圖象交于點P(?由指數(shù)函數(shù)的性質(zhì)可知,若x0≥2,則0<y由于x0≥2,所以a>1且4a點睛:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的應(yīng)用,其中解答中涉及到指數(shù)函數(shù)的圖象與性質(zhì)、對數(shù)函數(shù)的圖象與性質(zhì),以及不等式關(guān)系式得求解等知識點的綜合考查,著重考查了學(xué)生分析問題和解答問題的能力,本題的解答中熟記指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),構(gòu)造關(guān)于a的不等式是解答的關(guān)鍵,試題比較基礎(chǔ),屬于基礎(chǔ)題.8、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值為函數(shù)的半個周期,根據(jù)周期公式可得答案【詳解】函數(shù),∵對任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值為函數(shù)的半個周期,∵T=2π,∴|x1﹣x2|的最小值為π,故選:C.9、C【解析】已知,可得,根據(jù)兩角差的正切公式計算即可得出結(jié)果.【詳解】已知,則,.故選:C.10、B【解析】作出函數(shù)和直線圖象,根據(jù)圖象,利用數(shù)形結(jié)合方法可以得到的最小值.【詳解】畫出函數(shù)和直線的圖象如圖所示,是它們的三個相鄰的交點.由圖可知,當在點,在點時,的值最小,易知的橫坐標分別為,所以的最小值為,故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先根據(jù)函數(shù)的最高點與最低點求出A,b,然后由圖像求出函數(shù)周期從而計算出,再由函數(shù)過點求出.【詳解】,,,解得,則,因為函數(shù)過點,所以,,解得因為,所以,.故答案為:【點睛】本題考查由圖像確定正弦型函數(shù)的解析式,第一步通過圖像的最值確定A,b的值,第二步通過周期確定的值,第三步通過最值點或者非平衡位置的點以及12、【解析】根據(jù)題意,有在R上恒成立,則,即可得解.【詳解】若函數(shù)f(x)=的定義域為R,則在R上恒成立,則,解得:,故答案為:.13、或,【解析】由指數(shù)函數(shù)的圖象和性質(zhì)可得即可求解.【詳解】因為時,函數(shù)的值總大于,根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)可得,解得:或,故答案為:或,14、3【解析】首先根據(jù)分段函數(shù)求的值,再求的值.【詳解】,所以.故答案為:315、【解析】因為為偶函數(shù),所以等價于,又是區(qū)間上單調(diào)遞增,所以.解得.答案為:.點睛:本題屬于對函數(shù)單調(diào)性應(yīng)用的考查,若函數(shù)在區(qū)間上單調(diào)遞增,則時,有,事實上,若,則,這與矛盾,類似地,若在區(qū)間上單調(diào)遞減,則當時有;據(jù)此可以解不等式,由函數(shù)值的大小,根據(jù)單調(diào)性就可以得自變量的大小關(guān)系.本題中可以利用對稱性數(shù)形結(jié)合即可.16、【解析】∵扇形的圓心角為,半徑為,∴扇形的面積故答案為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(Ⅰ)連接,推導(dǎo)出四邊形是平行四邊形,從而.再證出,.從而平面,同理平面,由此能證明平面平面(Ⅱ)推導(dǎo)出,,從而平面,,同理,由此能證明平面AB1D1,從而平面【詳解】(Ⅰ)連接BC1,∵正方體ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1.又∵E,G分別是BC,CC1的中點,∴EG∥BC1,∴EG∥AD1.又∵EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG?平面EFG,EF?平面EFG,∴平面AB1D1∥平面EFG.
(Ⅱ)∵AB1D1正方體ABCD-A1B1C1D1中,AB1⊥A1B.又∵正方體ABCD-A1B1C1D1中,BC⊥平面AA1B1B,∴AB1⊥BC.又∵A1B與BC都在平面A1BC中,A1B與BC相交于點B,∴AB1⊥平面A1BC,∴A1C⊥AB1同理A1C⊥AD1,而AB1與AD1都在平面AB1D1中,AB1與AD1相交于點A,∴A1C⊥平面AB1D1,因此,A1C⊥平面EFG【點睛】本題考查面面平行、線面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系,考查運算求解能力,考查空間思維能力,是中檔題18、(1)(–5,–4)(2)【解析】(1)設(shè)點,根據(jù)題意寫出關(guān)于的方程組,得到點坐標;(2)由兩點間距離公式求出,再由兩點得到直線的方程,利用點到直線的距離公式,求出點到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設(shè)點,根據(jù)AC邊的中點M在y軸上,BC的中點N在x軸上,根據(jù)中點公式,可得,解得,所以點的坐標是(2)因為,得,所以直線的方程為,即,故點到直線的距離,所以的面積【點睛】本題考查中點坐標公式,兩點間距離公式,點到直線的距離公式,屬于簡單題.19、(1)(2)【解析】(1)根據(jù)的值域列不等式,由此求得的取值范圍.(2)先求得在時的值域,對進行分類討論,由此求得的取值范圍.【小問1詳解】的值域為,所以,,,所以.所以的取值范圍是.【小問2詳解】由(1),當時,所以在時的值域為記函數(shù)的值域為.若對任意的,存在,使得成立,則因為時,,所以,即函數(shù)的圖象過對稱中心(i)當,即時,函數(shù)在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,從而在上單調(diào)遞增,由對稱性得,則要使,只需,解得,所以,(ii)當,即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,在上單調(diào)遞減所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,,其中,要使,只需,解得,(iii)當,即時,函數(shù)在上單調(diào)遞減,由對稱性知,在上單調(diào)遞減,從而在上單調(diào)遞減.此時要使,只需,解得,綜上可知,實數(shù)的取值范圍是20、(1),;(2).【解析】(1)求出集合,再由集合的交、并、補運算即可求解.(2)根據(jù)集合的包含關(guān)系列出不等式:且,解不等式即可求解.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年遵化市人民法院招錄勞務(wù)派遣審判輔助人員備考題庫及一套完整答案詳解
- 2026年浙江省之江監(jiān)獄招聘備考題庫及參考答案詳解1套
- 網(wǎng)絡(luò)設(shè)備維護與故障診斷流程
- Zigbee技術(shù)的發(fā)展教學(xué)課件
- 入黨初級考試試題及答案
- x技術(shù)教學(xué)課件
- 2026年汽車行業(yè)智能化創(chuàng)新報告與未來交通體系變革報告
- 2026年制式離婚協(xié)議書民政局備案版
- 2026年醫(yī)療3D打印器官修復(fù)報告
- 安全用藥知識科普
- 器官移植術(shù)后排斥反應(yīng)的風(fēng)險分層管理
- 事業(yè)單位清算及財務(wù)報告編寫范本
- 護坡綠化勞務(wù)合同范本
- 臨床績效的DRG與CMI雙指標調(diào)控
- 2026年湛江日報社公開招聘事業(yè)編制工作人員備考題庫及完整答案詳解
- 2025-2026學(xué)年人教版數(shù)學(xué)三年級上學(xué)期期末仿真模擬試卷一(含答案)
- 2025年涼山教師業(yè)務(wù)素質(zhì)測試題及答案
- 2026年昭通市威信縣公安局第一季度輔警招聘(14人)筆試模擬試題及答案解析
- 氫能技術(shù)研發(fā)協(xié)議
- 2025交管12123學(xué)法減分整套試題帶答案解析(全國適用)
- 經(jīng)皮內(nèi)鏡下胃造瘺術(shù)護理配合
評論
0/150
提交評論