陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題含解析_第1頁
陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題含解析_第2頁
陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題含解析_第3頁
陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題含解析_第4頁
陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安市遠東一中2026屆高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.2.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=13.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.4.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則5.已知,分別為橢圓的左右焦點,為坐標原點,橢圓上存在一點,使得,設的面積為,若,則該橢圓的離心率為()A. B.C. D.6.已知命題:拋物線的焦點坐標為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.7.試在拋物線上求一點,使其到焦點的距離與到的距離之和最小,則該點坐標為A. B.C. D.8.直線在y軸上的截距為()A.-1 B.1C. D.9.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.10.已知數(shù)列滿足:,,則()A. B.C. D.11.已知,則下列說法中一定正確的是()A. B.C. D.12.設是函數(shù)的導函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.14.已知數(shù)列的前n項和,則其通項公式______15.設為第二象限角,若,則__________16.設,為實數(shù),已知經過點的橢圓與雙曲線有相同的焦點,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)若數(shù)列是公比為的等比數(shù)列,,求數(shù)列的前項和.18.(12分)已知函數(shù),其中為實數(shù).(1)若函數(shù)的圖像在處的切線與直線平行,求函數(shù)的解析式;(2)若,求在上的最大值和最小值.19.(12分)已知函數(shù).若圖象上的點處的切線斜率為(1)求a,b的值;(2)的極值20.(12分)已知點和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點作圓的切線,其中為切點,求四邊形PAMB的面積的最小值.21.(12分)已知拋物線的焦點為,點在拋物線上,當以為始邊,為終邊的角時,.(1)求的方程(2)過點的直線交于兩點,以為直徑的圓平行于軸的直線相切于點,線段交于點,求的面積與的面積的比值22.(10分)已知拋物線,過焦點的直線l交拋物線C于M、N兩點,且線段中點的縱坐標為2(1)求直線l的方程;(2)設x軸上關于y軸對稱的兩點P、Q,(其中P在Q的右側),過P的任意一條直線交拋物線C于A、B兩點,求證:始終被x軸平分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據題意,橢圓的標準方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B2、D【解析】根據雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.3、A【解析】根據橢圓的標準方程求出,利用雙曲線,結合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標準方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關鍵點點睛:本題主要考查雙曲線方程的求解,根據橢圓和雙曲線的關系建立方程求出,,是解決本題的關鍵,考查學生的計算能力,屬于基礎題4、B【解析】A.運用線面平行的性質,結合線線的位置關系,即可判斷;B.運用線面垂直的性質,即可判斷;C.運用線面垂直的性質,結合線線垂直和線面平行的位置即可判斷;D.運用線面平行的性質和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯;B.若m⊥α,,由線面垂直的性質定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯;D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯故選B【點睛】本題考查空間直線與平面的位置關系,考查直線與平面的平行、垂直的判斷與性質,記熟定理是解題的關鍵,注意觀察空間的直線與平面的模型5、D【解析】由可得直角三角形,故,且,結合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.6、D【解析】求出的焦點坐標,及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進而判斷出答案.【詳解】拋物線的焦點坐標為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項均為假命題.故選:D7、A【解析】由題意得拋物線的焦點為,準線方程為過點P作于點,由定義可得,所以,由圖形可得,當三點共線時,最小,此時故點的縱坐標為1,所以橫坐標.即點P的坐標為.選A點睛:與拋物線有關的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實現(xiàn)由點到點的距離與點到直線的距離的轉化(1)將拋物線上的點到準線的距離轉化為該點到焦點的距離,構造出“兩點之間線段最短”,使問題得解;(2)將拋物線上的點到焦點的距離轉化為點到準線的距離,利用“與直線上所有點的連線中的垂線段最短”解決8、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A9、A【解析】根據直線方程,求得直線斜率,再根據傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.10、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項,推導出數(shù)列{an}從第6項起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A11、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質進行判斷.【詳解】當,時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當,時,滿足,,,所以,D錯誤.故選:B12、C【解析】先由圖像分析出的正負,直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調遞減,在區(qū)間(0,2)上單調遞增,即當時,;當x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據橢圓焦點在軸上方程的特征進行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:414、【解析】利用當時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當時,,當時,不適合上式,∴,故答案為:.15、【解析】先求出,再利用二倍角公式求的值.【詳解】因為為第二象限角,若,所以.所以.故答案為【點睛】本題主要考查同角三角函數(shù)的平方關系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.16、1【解析】由點P在橢圓上,可得的值,再根據橢圓與雙曲線有相同的焦點即可求解.【詳解】解:因為點在橢圓上,所以,解得,所以橢圓方程為,又橢圓與雙曲線有相同的焦點,所以,解得,故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意得解方程組求出,從而可求出數(shù)列的通項公式,(2)因為是公比為的等比數(shù)列,又,,所以,從而可得,然后利用分組求和法求解即可【小問1詳解】設等差數(shù)列的公差為.由題意得解得,.所以.【小問2詳解】因為是公比為的等比數(shù)列,又,,所以,所以.所以.18、(1)(2),【解析】(1)根據平行關系得到切線斜率,進而得到導函數(shù)在處的函數(shù)值,列出方程,求出,進而得到函數(shù)解析式;(2)先由求出,再利用導函數(shù)求單調性和最值.【小問1詳解】,.由題意得:,解得:.,【小問2詳解】,則,解得,,,當,解得:,即函數(shù)在單調遞減,當,解得:或,即函數(shù)分別在,遞增.又,,,,,.19、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導函數(shù),再根據圖象上的點處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導函數(shù),根據導函數(shù)的符號求得函數(shù)的單調區(qū)間,再根據極值的定義即可得解.【小問1詳解】解:,,;【小問2詳解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的極大值為,極小值為.20、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當時,面積最小.此時...21、(1)(2)【解析】(1)過點作,垂足為,過點作,垂足為,根據拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據,求得,設,得到,進而求得,因為為的中點,求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準線方程,如圖所示,過點作,垂足為,過點作,垂足為,因為時,,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設,因為直線的直線過點,設直線的方程為聯(lián)立方程組,整理得,可得,則,因為為的中點,所以,由拋物線的定義得,設圓與直線相切于點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論