安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省滁州市南橋區(qū)海亮學校2026屆高二上數(shù)學期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班進行了一次數(shù)學測試,全班學生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若該班學生這次數(shù)學測試成績的中位數(shù)的估計值為,則的值為()A. B.C. D.2.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或3.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.4.如圖,在平行六面體中,設,,,用基底表示向量,則()A. B.C. D.5.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館6.某地政府為落實疫情防控常態(tài)化,不定時從當?shù)?80名公務員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務員按001到780進行編號,若018號被抽中,則下列編號也被抽中的是()A.076 B.122C.390 D.5227.已知f(x)是定義在R上的偶函數(shù),當時,,且f(-1)=0,則不等式的解集是()A. B.C. D.8.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件9.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)10.曲線在點處的切線方程為()A. B.C. D.11.如圖,是函數(shù)的部分圖象,且關于直線對稱,則()A. B.C. D.12.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平行四邊形內(nèi)接于橢圓,且的斜率之積為,則橢圓的離心率為________14.設雙曲線的焦點為,點為上一點,,則為_____.15.若橢圓的長軸是短軸的2倍,且經(jīng)過點,則橢圓的離心率為________.16.已知等差數(shù)列的前n項和為公差為d,且滿足則的取值范圍是_____________,的取值范圍是_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點到定點的距離比到軸的距離大,設動點的軌跡為曲線,分別過曲線上的兩點,做曲線的兩條切線,且交于點,與直線交于兩點(1)求曲線的方程;(2)求面積的最小值.18.(12分)已知函數(shù),且)的圖象經(jīng)過點和

.(1)求實數(shù),的值;(2)若,求數(shù)列前項和

.19.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若,且,討論函數(shù)的零點個數(shù).20.(12分)已知點,直線:,直線m過點N且與垂直,直線m交圓于兩點A,B.(1)求直線m的方程;(2)求弦AB的長.21.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;22.(10分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,即可求得結果.【詳解】由題意有,得,又由,得,解得,,有故選:A.2、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.3、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.4、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B5、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A6、B【解析】根據(jù)系統(tǒng)抽樣的特點,寫出組數(shù)與對應抽取編號的關系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設第組抽取的編號為,故可設,又第一組抽中號,故可得,解得故,當時,.故選:.7、D【解析】根據(jù)題意可知,當時,,即函數(shù)在上單調(diào)遞增,再結合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進而解得答案.【詳解】由題意,當時,,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當時,.故選:D.8、B【解析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關系,充分必要條件,重點考查計算,理解能力,屬于基礎題型.9、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.10、A【解析】利用切點和斜率求得切線方程.【詳解】由,有曲線在點處的切線方程為,整理為故選:A11、C【解析】先根據(jù)條件確定為函數(shù)的極大值點,得到的值,再根據(jù)圖像的單調(diào)性和導數(shù)幾何意義得到和的正負即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導數(shù)的幾何意義,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導數(shù)的幾何意義所以.即.故選:C.12、B【解析】利用正弦定理,以及大邊對大角,結合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)對稱性設,,,根據(jù)得到,再求離心率即可.【詳解】由對稱性,,關于原點對稱,設,,,,故.故答案為:14、【解析】將方程化為雙曲線的標準方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經(jīng)過點,當焦點在軸時,可知,,所以,所以,當焦點在軸時,同理可得.故答案為:16、①.②.【解析】通過判斷出,進而將化為基本量求得答案;然后用基本量將化簡,進而通過的范圍求得答案.【詳解】由,,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意可得化簡可得答案;(2)求出、方程并得到、點坐標,再聯(lián)立,方程求出交點和、點到的距離,可得,設,與拋物線方程聯(lián)立利用韋達定理得到,設,記,利用導數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡得:;【小問2詳解】由題意可知:,,,過點的切線斜率為,方程為:①,令,,則,同理:方程為:②,,聯(lián)立①②得:,的交點,,點到的距離,所以③,設:,則,整理得,所以,由韋達定理得:,,代入③式得:,設,記,則,令得(舍負),時,單調(diào)遞減:時,單調(diào)遞增,所以,當且僅當時的最小值為.18、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,

.【小問2詳解】由(1)得,又,所以,故

.19、(1).(2)答案見解析.【解析】(1)求導函數(shù),求得,,由此可求得曲線在點處的切線方程;(2)求得導函數(shù),分和討論,當時,設,求導函數(shù),分析導函數(shù)的符號,得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點存在定理可得答案.【小問1詳解】解:當時,,所以,故,,所以曲線在點處的切線方程為.【小問2詳解】解:依題意,則,當時,,所以在上單調(diào)遞增;當時,設,此時,所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當,即時,有唯一零點在區(qū)間上,當,即時,在上無零點;故當時,在上有1個零點;當時,在上無零點.20、(1)(2)【解析】(1)求出斜率,用點斜式求直線方程;(2)利用垂徑定理求弦長.【小問1詳解】因為直線:,所以直線的斜率為.因為直線m過點N且與垂直,所以直線的斜率為,又過點,所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長21、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的求解,以及直線與圓的位置關系的應用,其中解答中熟練應用直線與圓的位置關系合理轉化是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.22、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關系可構造方程求得,由此可得橢圓方程;(2)當直線斜率不存在時,表示出兩點坐標,由兩點連線斜率公式表示出,整理可得直線為;當直線斜率存在時,設,與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當直線斜率不存在時,設直線方程為,則,則,,解得:,直線方程為;當直線斜率存在時,設直線方程為,聯(lián)立方程組得:,設,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論