上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市寶山區(qū)上海大學市北附屬中學2026屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有()A. B.C. D.2.設(shè)全集,集合,,則=()A. B.C. D.3.函數(shù)的最小正周期為()A. B.C. D.4.非零向量,,若點關(guān)于所在直線的對稱點為,則向量為A. B.C. D.5.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.6.方程的解所在區(qū)間是()A. B.C. D.7.已知函數(shù),則下列判斷正確的是A.函數(shù)是奇函數(shù),且在R上是增函數(shù)B.函數(shù)偶函數(shù),且在R上是增函數(shù)C.函數(shù)是奇函數(shù),且在R上是減函數(shù)D.函數(shù)是偶函數(shù),且在R上是減函數(shù)8.設(shè),,則的值為()A. B.C.1 D.e9.“是鈍角”是“是第二象限角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.“,”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)過點,則的解集為___________.12.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________13.對,不等式恒成立,則m的取值范圍是___________;若在上有解,則m的取值范圍是___________.14.寫出一個同時具有下列三個性質(zhì)的函數(shù):___________.①為冪函數(shù);②為偶函數(shù);③在上單調(diào)遞減.15.設(shè)是R上的奇函數(shù),且當時,,則__________16.已知函數(shù)的定義域和值域都是集合,其定義如表所示,則____________.x012012三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象在直線的下方且無限接近直線.(1)判斷函數(shù)的單調(diào)性(寫出判斷說明即可,無需證明),并求函數(shù)解析式;(2)判斷函數(shù)的奇偶性并用定義證明;(3)求函數(shù)的值域.18.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P()(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值19.計算下列各式的值:(1)lg2(2)sin20.已知函數(shù)是定義在R上的奇函數(shù)(1)用定義法證明為增函數(shù);(2)對任意,都有恒成立,求實數(shù)k的取值范圍21.已知函數(shù)(x∈R,(m>0)是奇函數(shù).(1)求m的值:(2)用定義法證明:f(x)是R上的增函數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】函數(shù)分別是上的奇函數(shù)、偶函數(shù),,由,得,,,解方程組得,代入計算比較大小可得.考點:函數(shù)奇偶性及函數(shù)求解析式2、B【解析】根據(jù)題意和補集的運算可得,利用交集的概念和運算即可得出結(jié)果.【詳解】由題意知,所以.故選:B3、C【解析】根據(jù)正弦型函數(shù)周期的求法即可得到答案.【詳解】故選:C.4、A【解析】如圖由題意點B關(guān)于所在直線的對稱點為B1,所以∠BOA=∠B1OA,所以又由平行四邊形法則知:,且向量的方向與向量的方向相同,由數(shù)量積的概念向量在向量方向上的投影是OM=,設(shè)與向量方向相同的單位向量為:,所以向量=2=2=,所以=.故選A.點睛:本題利用平行四邊形法則表示和向量,因為對稱,所以借助數(shù)量積定義中的投影及單位向量即可表示出和向量,解題時要善于借助圖像特征體現(xiàn)向量的工具作用.5、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D6、C【解析】判斷所給選項中的區(qū)間的兩個端點的函數(shù)值的積的正負性即可選出正確答案.【詳解】∵,∴,,,,∴,∵函數(shù)的圖象是連續(xù)的,∴函數(shù)的零點所在的區(qū)間是.故選C【點睛】本題考查了根據(jù)零存在原理判斷方程的解所在的區(qū)間,考查了數(shù)學運算能力.7、A【解析】求出的定義域,判斷的奇偶性和單調(diào)性,進而可得解.【詳解】的定義域為R,且;∴是奇函數(shù);又和都是R上的增函數(shù);是R上的增函數(shù)故選A【點睛】本題考查奇偶性的判斷,考查了指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題8、A【解析】根據(jù)所給分段函數(shù)解析式計算可得;【詳解】解:因為,,所以,所以故選:A9、A【解析】根據(jù)鈍角和第二象限角的定義,結(jié)合充分性、必要性的定義進行判斷即可.【詳解】因為是鈍角,所以,因此是第二象限角,當是第二象限角時,例如是第二象限角,但是顯然不成立,所以“是鈍角”是“是第二象限角”的充分不必要條件,故選:A10、A【解析】根據(jù)充分條件和必要條件的定義判斷.【詳解】∵“,”可推出“”,“”不能推出“,”,例如,時,,∴“,”是“”充分不必要條件.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由函數(shù)過點可求得參數(shù)a的值,進而解對數(shù)不等式即可解決.詳解】由函數(shù)過點可得,,則,即,此時由可得即故答案為:12、-1【解析】由已知得,所以則,故答案.13、①.②.【解析】(1)根據(jù)一元二次函數(shù)的圖象,考慮開口方向和判別式,即可得到答案;(2)利用參變分離,將問題轉(zhuǎn)化為不等式在上有解;【詳解】(1)關(guān)于x的不等式函數(shù)對于任意實數(shù)x恒成立,則,解得m的取值范圍是.(2)若在上有解,則在上有解,易知當時,當時,此時記,則,,在上單調(diào)遞減,故,綜上可知,,故m的取值范圍是.故答案為:;14、(或,,答案不唯一)【解析】結(jié)合冪函數(shù)的圖象與性質(zhì)可得【詳解】由冪函數(shù),當函數(shù)圖象在一二象限時就滿足題意,因此,或,等等故答案為:(或,,答案不唯一)15、【解析】由函數(shù)的性質(zhì)得,代入當時的解析式求出的值,即可得解.【詳解】當時,,,是上的奇函數(shù),故答案為:16、【解析】根據(jù)表格從里層往外求即可.【詳解】解:由表可知,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在上單調(diào)遞增,(2)奇函數(shù),證明見解析(3)【解析】(1)根據(jù)函數(shù)的單調(diào)性情況直接判斷;(2)根據(jù)奇偶性的定義直接判斷;(3)由奇偶性直接判斷值域.【小問1詳解】因為隨著增大,減小,即增大,故隨增大而增大,所以函數(shù)在上單調(diào)遞增.由的圖象在直線下方,且無限接近直線,得,所以函數(shù)的解析式.【小問2詳解】由(1)得,整理得,函數(shù)定義域關(guān)于原點對稱,,所以函數(shù)是奇函數(shù).小問3詳解】方法一:由(1)知,由(2)知,函數(shù)圖象關(guān)于原點中心對稱,故,所以函數(shù)的值域為.方法二:由,得,得,得,得,得,所以函數(shù)的值域為.18、(Ⅰ);(Ⅱ)或.【解析】分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.19、(1)1(2)-1【解析】(1)利用對數(shù)的運算性質(zhì)直接計算可得;(2)先進行切化弦,再通分后利用和差角公式和誘導公式即可求得.【小問1詳解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小問2詳解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-120、(1)證明見解析(2)【解析】(1)根據(jù)函數(shù)單調(diào)性定義及指數(shù)函數(shù)的單調(diào)性與值域即可證明;(2)由已知條件,利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,然后分離參數(shù),利用基本不等式求出最值即可得答案.【小問1詳解】證明:設(shè),則,由,可得,即,又,,所以,即,則在上為增函數(shù);【小問2詳解】解:因為任意,都有恒成立,且函數(shù)是定義在R上的奇函數(shù),所以對恒成立,又由(1)知函數(shù)在上為增函數(shù),所以對恒成立,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論