版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇揚州市邗江區(qū)公道中學2026屆數學高三第一學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.音樂,是用聲音來展現美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數學表達式來描述,它們是一些形如的簡單正弦函數的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數學表達式可知,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波.下列函數中不能與函數構成樂音的是()A. B. C. D.2.二項式的展開式中,常數項為()A. B.80 C. D.1603.定義運算,則函數的圖象是().A. B.C. D.4.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.5.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.6.A. B. C. D.7.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.8.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.9.已知三棱錐且平面,其外接球體積為()A. B. C. D.10.如圖,在中,,且,則()A.1 B. C. D.11.已知是定義是上的奇函數,滿足,當時,,則函數在區(qū)間上的零點個數是()A.3 B.5 C.7 D.912.下列函數中,既是偶函數又在區(qū)間上單調遞增的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.14.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.15.已知向量,,若,則________.16.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列滿足,.(1)求數列的通項公式;(2)設,求數列的前項和.18.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.19.(12分)已知數列滿足,等差數列滿足,(1)分別求出,的通項公式;(2)設數列的前n項和為,數列的前n項和為證明:.20.(12分)已知為各項均為整數的等差數列,為的前項和,若為和的等比中項,.(1)求數列的通項公式;(2)若,求最大的正整數,使得.21.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.22.(10分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數的周期與頻率,考查理解分析能力.2、A【解析】
求出二項式的展開式的通式,再令的次數為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.3、A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.4、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.5、B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.6、A【解析】
直接利用復數代數形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數代數形式的乘除運算,是基礎的計算題.7、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.8、A【解析】
先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.9、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.10、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.11、D【解析】
根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區(qū)間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,
函數的周期為3,
∵當時,,
令,則,解得或1,
又∵函數是定義域為的奇函數,
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數是周期為3的周期函數,
∴方程=0在區(qū)間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、等腰三角形【解析】∵∴根據正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,14、【解析】令直線:,與橢圓方程聯立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數法:若題目的條件和結論能體現一種明確的函數,則可首先建立起目標函數,再求這個函數的最值,求函數最值的常用方法有配方法,判別式法,重要不等式及函數的單調性法等.15、10【解析】
根據垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據向量垂直求參數,向量模,意在考查學生的計算能力.16、.【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數和所求事件包含的基本事件數.(1)基本事件總數較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數原理的正確使用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達式,然后對是否滿足在時的表達式進行檢驗,由此可得出數列的通項公式;(2)求出數列的通項公式,對分奇數和偶數兩種情況討論,利用奇偶分組求和法結合等差數列和等比數列的求和公式可求得結果.【詳解】(1),當時,;當時,由得,兩式相減得,.滿足.因此,數列的通項公式為;(2).①當為奇數時,;②當為偶數時,.綜上所述,.【點睛】本題考查數列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.18、(1),最大值公頃;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5?!军c睛】本題主要考查利用余弦定理解三角形以及同角三角函數平方關系的應用,意在考查學生的數學建模以及數學運算能力。19、(1)(2)證明見解析【解析】
(1)因為,所以,所以,即,又因為,所以數列為等差數列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數列的前n項和為,則兩式相減得,所以,設則,所以.20、(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數列為各項均為整數,所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數列的通項公式、前項和公式,考查裂項相消法求數列的和.在等差數列和等比數列中基本量法是解題的基本方法.21、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補形法,取的中點為,連接,可結合等腰三角形性質和線面垂直性質,先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內,,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標原點,以分別為軸建立空間直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光明區(qū)2025年3月廣東深圳市光明區(qū)財政局招聘一般專干1人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 保山2025年保山市教育體育局所屬部分事業(yè)單位考試選調6名專業(yè)技術人員筆試歷年典型考點題庫附帶答案詳解
- 亳州2025年安徽亳州市華佗中醫(yī)院第二批特需人才招聘17人筆試歷年難易錯考點試卷帶答案解析
- 云南省2025年云南省機關事務管理局第一衛(wèi)生所第二衛(wèi)生所公開招聘人員(4人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南省2025云南玉溪市聶耳文化場館服務中心招聘編外人員(5人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南云南省委黨校(云南行政學院)2025年招聘20人筆試歷年典型考點題庫附帶答案詳解
- 樂山2025年四川樂山金口河區(qū)遴選事業(yè)單位工作人員5人筆試歷年備考題庫附帶答案詳解
- 烏海2025年內蒙古烏海市教育系統第二批人才引進86人筆試歷年典型考點題庫附帶答案詳解
- 中央2025年中國熱帶農業(yè)科學院香料飲料研究所第二批招聘(第1號)筆試歷年難易錯考點試卷帶答案解析
- 上海2025年上海市公共衛(wèi)生臨床中心工作人員招聘筆試歷年??键c試題專練附帶答案詳解
- 河南豫能控股股份有限公司及所管企業(yè)2026屆校園招聘127人筆試備考試題及答案解析
- 草原管護考試題及答案
- Unit 8 Let's Communicate!Section B 1a-1e 課件 2025-2026學年人教版八年級英語上冊
- 2026年四川單招職高語文基礎知識練習與考點分析含答案
- 2026年交管12123駕照學法減分題庫100道【基礎題】
- 寒假女生安全教育課件
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫及1套參考答案詳解
- 6.2 中位數與箱線圖 教學設計(2課時)2025-2026學年數學北師大版八年級上冊
- 預制箱梁架設安全技術交底
- PDCA提高臥床患者踝泵運動鍛煉的正確率
- YB/T 036.10-1992冶金設備制造通用技術條件鍛鋼件超聲波探傷方法
評論
0/150
提交評論