湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省隨州市第二高級中學、鄖陽中學2026屆高三數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.52.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.以,為直徑的圓的方程是A. B.C. D.4.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.5.集合的真子集的個數(shù)是()A. B. C. D.6.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.7.若,滿足約束條件,則的取值范圍為()A. B. C. D.8.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.9.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;10.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.11.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.12.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則________,的面積為________.14.正方體中,是棱的中點,是側(cè)面上的動點,且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側(cè)面中,與所成的銳二面角相等的側(cè)面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)15.已知函數(shù),則的值為____16.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.18.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.19.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.20.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.21.(12分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.22.(10分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.2、A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.3、A【解析】

設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.4、D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.5、C【解析】

根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題.6、B【解析】

由焦點得拋物線方程,設(shè)點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.7、B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.8、D【解析】

將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應(yīng)用,指定項系數(shù)的求法,屬于基礎(chǔ)題.9、A【解析】

要計算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因為計算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.10、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.11、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.12、C【解析】

根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎(chǔ)題.14、①②③④【解析】

取中點,中點,中點,先利用中位線的性質(zhì)判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質(zhì)及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.15、4【解析】

根據(jù)的正負值,代入對應(yīng)的函數(shù)解析式求解即可.【詳解】解:.故答案為:.【點睛】本題考查分段函數(shù)函數(shù)值的求解,是基礎(chǔ)題.16、【解析】

根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學生的計算能力和綜合應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】

(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.18、t=1【解析】

把變形為結(jié)合基本不等式進行求解.【詳解】因為即,當且僅當,,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學運算的核心素養(yǎng).19、(1)(2)1008【解析】

(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20、(1)證明見解析;(2)1【解析】

(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.21、(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解析】

(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,,再結(jié)合中位數(shù)的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設(shè)內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設(shè)一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設(shè)內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設(shè)事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論