重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題含解析_第1頁
重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題含解析_第2頁
重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題含解析_第3頁
重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題含解析_第4頁
重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市兩江育才中學2026屆高二數(shù)學第一學期期末質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的一個充要條件是()A. B.C. D.2.已知等比數(shù)列的前項和為,則關于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個3.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.4.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.145.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.6.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.47.設橢圓:的右頂點為,右焦點為,為橢圓在第二象限內的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.8.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點)與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點)與一條射線9.定義域為的函數(shù)滿足,且的導函數(shù),則滿足的的集合為A. B.C. D.10.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.11.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件12.以,為焦點,且經(jīng)過點的橢圓的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.關于曲線,則以下結論正確的個數(shù)有______個①曲線C關于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構成正方形14.在學習《曲線與方程》的課堂上,老師給出兩個曲線方程;,老師問同學們:你想到了什么?能得到哪些結論?下面是四位同學的回答:甲:曲線關于對稱;乙:曲線關于原點對稱;丙:曲線與坐標軸在第一象限圍成的圖形面積;丁:曲線與坐標軸在第一象限圍成的圖形面積;四位同學回答正確的有______(選填“甲、乙、丙、丁”)15.若,,,四點中恰有三點在橢圓上,則橢圓C的方程為________.16.等差數(shù)列的前項和為,已知,則__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上下兩個焦點分別為,,過點與y軸垂直的直線交橢圓C于M,N兩點,△的面積為,橢圓C的離心率為(1)求橢圓C的標準方程;(2)已知O為坐標原點,直線與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù),使得,求m的取值范圍18.(12分)已知函數(shù).(1)若,討論函數(shù)的單調性;(2)當時,求在區(qū)間上的最小值和最大值.19.(12分)已知橢圓的左,右焦點分別為,三個頂點(左、右頂點和上頂點)構成的三角形的面積為,離心率為方程的根.(1)求橢圓方程;(2)橢圓的一個內接平行四邊形的一組對邊分別過點和,如圖,若這個平行四邊形面積為,求平行四邊形的四個頂點的縱坐標的乘積.20.(12分)三棱柱中,側面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由21.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點.(1)若點是線段的中點,求證:直線平面;(2)求證:平面平面.22.(10分)已知命題:方程有實數(shù)解,命題:,.(1)若是真命題,求實數(shù)的取值范圍;(2)若為假命題,且為真命題,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結合不等式的基本性質,利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D2、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設等比數(shù)列的公比為,當時,,因為,所以無解,即方程的解的個數(shù)為0,當時,,所以時,方程有無數(shù)個偶數(shù)解,當時,方程無解,綜上,關于的方程的解的個數(shù)為0或無數(shù)個.故選:D.3、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調遞減,在上單調遞增,根據(jù)函數(shù)的單調性,即可判斷出的大小關系.【詳解】設,由題,得,即,所以函數(shù)在上單調遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調性判斷大小的問題,其中涉及到構造函數(shù)的運用.4、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.5、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據(jù)計算的值6、B【解析】先求出拋物線方程,焦點坐標,再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標為,所以點到拋物線焦點的距離為故選:B7、B【解析】如上圖,設AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質,主要是離心率的求法,本題的關鍵是利用中位線定理和相似三角形定理8、B【解析】化簡得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點)與一條直線,故選:B.9、B【解析】利用2f(x)<x+1構造函數(shù)g(x)=2f(x)-x-1,進而可得g′(x)=2f′(x)-1>0.得出g(x)的單調性結合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因為f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調增函數(shù)因為f(1)=1,所以g(1)=2f(1)-1-1=0.所以當x<1時,g(x)<0,即2f(x)<x+1.故選B.【點睛】本題主要考察導數(shù)的運算以及構造函數(shù)利用其單調性解不等式.屬于中檔題10、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A11、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.12、B【解析】根據(jù)焦點在x軸上,c=1,且過點,用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因為焦點在x軸上,所以C不正確;又因為c=1,故排除D;將代入得,故A錯誤,所以選B.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設曲線C與曲線有4個交點且交點構成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質,處理問題的關鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.14、甲、乙、丙、丁【解析】結合對稱性判斷甲、乙的正確性;通過對比和與坐標軸在第一象限圍成的圖形面積來判斷丙丁的正確性.【詳解】對于甲:交換方程中和的位置得,所以曲線關于對稱,甲回答正確.對于乙:和兩個點都滿足方程,所以曲線關于原點對稱,乙回答正確.對于丙:直線與坐標軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對于?。簣A與坐標軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁15、【解析】由于,關于軸對稱,故由題設知C經(jīng)過,兩點,C不經(jīng)過點,然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關于軸對稱,故由題設知經(jīng)過,兩點,所以.又由知,不經(jīng)過點,所以點在上,所以.因此,故方程為.故答案為:.【點睛】求橢圓的標準方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設出橢圓的標準方程,結合已知條件求出,;若焦點位置不明確,則需要分焦點在軸上和軸上兩種情況討論,也可設橢圓的方程為16、【解析】根據(jù)等差數(shù)列的求和公式和等差數(shù)列的性質即可求出.【詳解】因為等差數(shù)列的前項和為,,則,故答案為:33.【點睛】本題考查了等差數(shù)列的求和公式和等差數(shù)列的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進行分類討論,當時,根據(jù)三點共線求得,聯(lián)立直線方程和橢圓方程,利用韋達定理,結合直線交橢圓兩點,代值計算即可求得結果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點P,故可得的坐標為,當時,則,由橢圓的對稱性可知:,故滿足題意;當時,因為三點共線,若存在實數(shù),使得,即,則,故可得.又直線與橢圓交于兩點,故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設坐標為,則,又,即,故可得:,即,也即,代入韋達定理整理得:,即,當時,上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點睛】本題考察橢圓方程的求解,以及橢圓中范圍問題的處理;解決本題的關鍵一是要求得的取值,二是充分利用韋達定理以及直線和曲線相交,則聯(lián)立方程組后得到的一元二次方程的,屬綜合中檔題.18、(1)在和上單調遞增,在上單調遞減.(2)答案見解析.【解析】(1)求解導函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調性;(2)由(1)得函數(shù)的單調性,從而得最小值,計算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域為,,時,或,因為,所以,時,或,時,,所以函數(shù)在和上單調遞增,在上單調遞減.【小問2詳解】因為,由(1)知,在上單調遞減,在上單調遞增,所以最小值為,又因為,當時,,此時最小值為,最大值為;當時,,此時最小值為,最大值為.【點睛】導數(shù)是研究函數(shù)的單調性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用19、(1);(2).【解析】(1)由橢圓離心率的性質及一元二次方程的根可得,再由橢圓參數(shù)關系、已知三角形面積求橢圓參數(shù),即可得橢圓方程.(2)設直線,聯(lián)立橢圓方程并結合韋達定理求,進而可得,再根據(jù)求參數(shù)t,可得,結合橢圓的對稱性求,即可求結果.【小問1詳解】由的根為,所以橢圓的離心率,依題意,,解得,即橢圓的方程為;【小問2詳解】設直線,聯(lián)立,消去得,由韋達定理得:,所以,所以,所以橢圓的內接平行四邊形面積.所以,解得或(舍去),所以,根據(jù)橢圓的對稱性知:,故平行四邊形的四個頂點的縱坐標的乘積為.20、(1)證明見解析;(2)【解析】(1)取BC的中點O,連結AO、,在三角形中分別證明和,再利用勾股定理證明,結合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結果.(2)建立空間直角坐標系,假設點M存在,設,求出M點坐標,然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點O,連結AO,,,為等腰直角三角形,所以,;側面為菱形,,所以三角形為為等邊三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論