版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省鞍山市2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,,,點(diǎn)C在A(yíng)B上,且,設(shè),則的值為()A. B. C. D.2.若sin(α+3π2A.-12 B.-133.已知斜率為2的直線(xiàn)l過(guò)拋物線(xiàn)C:的焦點(diǎn)F,且與拋物線(xiàn)交于A(yíng),B兩點(diǎn),若線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.44.已知命題:是“直線(xiàn)和直線(xiàn)互相垂直”的充要條件;命題:對(duì)任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.5.已知x,y滿(mǎn)足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.6.若集合,則=()A. B. C. D.7.設(shè),,則()A. B. C. D.8.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫(huà)著一條條等距離的平行線(xiàn),而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線(xiàn)距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線(xiàn)相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線(xiàn)相交的概率約為()A. B. C. D.9.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺10.將函數(shù)向左平移個(gè)單位,得到的圖象,則滿(mǎn)足()A.圖象關(guān)于點(diǎn)對(duì)稱(chēng),在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱(chēng)C.圖象關(guān)于直線(xiàn)對(duì)稱(chēng),在上的最小值為1D.最小正周期為,在有兩個(gè)根11.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.12.對(duì)于函數(shù),若滿(mǎn)足,則稱(chēng)為函數(shù)的一對(duì)“線(xiàn)性對(duì)稱(chēng)點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線(xiàn)性對(duì)稱(chēng)點(diǎn)”,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問(wèn)題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.已知,,,的夾角為30°,,則_________.15.用數(shù)字、、、、、組成無(wú)重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個(gè)數(shù)字奇偶性不同的有_____個(gè).16.若,則____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線(xiàn)段上靠近的三等分點(diǎn).(1)求證:;(2)求直線(xiàn)與平面所成角的正弦值.18.(12分)已知函數(shù)是自然對(duì)數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.19.(12分)如圖,在中,點(diǎn)在上,,,.(1)求的值;(2)若,求的長(zhǎng).20.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).21.(12分)已知三棱錐P-ABC(如圖一)的平面展開(kāi)圖(如圖二)中,四邊形ABCD為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線(xiàn)BM與平面PAC所成的角最大時(shí),求直線(xiàn)MA與平面MBC所成角的正弦值.22.(10分)已知拋物線(xiàn)C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為k(k0)的直線(xiàn)交C于A(yíng),B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)交y軸于點(diǎn)E,拋物線(xiàn)C在點(diǎn)A,B處的切線(xiàn)相交于點(diǎn)G.記四邊形AEBG的面積為S.(1)求點(diǎn)G的軌跡方程;(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿(mǎn)足條件的S的值;若不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線(xiàn)定理等知識(shí)的綜合應(yīng)用.2、B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
設(shè)直線(xiàn)l的方程為x=y(tǒng),與拋物線(xiàn)聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線(xiàn)l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.4、A【解析】
先分別判斷每一個(gè)命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時(shí),直線(xiàn)和直線(xiàn),即直線(xiàn)為和直線(xiàn)互相垂直,所以“”是直線(xiàn)和直線(xiàn)互相垂直“的充分條件,當(dāng)直線(xiàn)和直線(xiàn)互相垂直時(shí),,解得.所以“”是直線(xiàn)和直線(xiàn)互相垂直“的不必要條件.:“”是直線(xiàn)和直線(xiàn)互相垂直“的充分不必要條件,故是假命題.當(dāng)時(shí),沒(méi)有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線(xiàn)的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、C【解析】
畫(huà)出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線(xiàn)的斜率為,直線(xiàn)的斜率為,所以?xún)芍本€(xiàn)垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于常考題.6、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.7、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.8、D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.9、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀(guān)圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.10、C【解析】
由輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個(gè)單位,可得,由正弦函數(shù)的性質(zhì)可知,的對(duì)稱(chēng)中心滿(mǎn)足,解得,所以A、B選項(xiàng)中的對(duì)稱(chēng)中心錯(cuò)誤;對(duì)于C,的對(duì)稱(chēng)軸滿(mǎn)足,解得,所以圖象關(guān)于直線(xiàn)對(duì)稱(chēng);當(dāng)時(shí),,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對(duì)于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時(shí)僅有一個(gè)解為,所以D錯(cuò)誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡(jiǎn),三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.11、A【解析】
結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題12、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線(xiàn)性對(duì)稱(chēng)點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線(xiàn)性對(duì)稱(chēng)點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.14、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線(xiàn),.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線(xiàn)定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.15、【解析】
對(duì)首位數(shù)的奇偶進(jìn)行分類(lèi)討論,利用分步乘法計(jì)數(shù)原理和分類(lèi)加法計(jì)數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個(gè)數(shù)位上的數(shù)都是奇數(shù),其余三個(gè)數(shù)位上的數(shù)為偶數(shù),此時(shí),符號(hào)條件的位自然數(shù)個(gè)數(shù)為個(gè);②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個(gè)數(shù)位上,第二、四、六個(gè)數(shù)位上的數(shù)為奇數(shù),此時(shí),符合條件的位自然數(shù)個(gè)數(shù)為個(gè).綜上所述,符合條件的位自然數(shù)個(gè)數(shù)為個(gè).故答案為:.【點(diǎn)睛】本題考查數(shù)的排列問(wèn)題,要注意首位數(shù)字的分類(lèi)討論,考查分步乘法計(jì)數(shù)和分類(lèi)加法計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.16、【解析】
由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡(jiǎn),再利用齊次式即可求出結(jié)果.【詳解】因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查三角函數(shù)化簡(jiǎn)求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過(guò),證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線(xiàn)面角的向量法公式求解.【詳解】(1)因?yàn)?,故,所以四邊形為菱形,而平面,?因?yàn)椋?,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線(xiàn)分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)?,所?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)椋O(shè)直線(xiàn)與平面所成角為,則,所以直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查空間線(xiàn)面的位置關(guān)系、線(xiàn)面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.18、(1)減區(qū)間是,增區(qū)間是;(2),證明見(jiàn)解析.【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時(shí),遞減,當(dāng)時(shí),遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時(shí),所以當(dāng)時(shí),有一個(gè)極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),當(dāng)時(shí),沒(méi)有極值點(diǎn),綜上因?yàn)槭堑膬蓚€(gè)極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.19、(1);(2).【解析】
(1)由兩角差的正弦公式計(jì)算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因?yàn)?,所?因?yàn)?,所以,所?(2)在中,由,得,在中,由余弦定理可得,所以.【點(diǎn)睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)運(yùn)用絕對(duì)值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號(hào)成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對(duì)值不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力,屬于中檔題.21、(1)見(jiàn)解析(2)【解析】
(1)設(shè)的中點(diǎn)為,連接.由展開(kāi)圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線(xiàn)面成角的定義可知是直線(xiàn)與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線(xiàn)BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線(xiàn)分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線(xiàn)MA與平面MBC所成角為,則由得:.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《紅香蕉高產(chǎn)栽培技術(shù)規(guī)程》(征求意見(jiàn)稿)編制說(shuō)明
- 養(yǎng)老院老人疾病預(yù)防制度
- 養(yǎng)老院老人文化活動(dòng)管理制度
- 養(yǎng)老院活動(dòng)策劃制度
- 養(yǎng)老院入住老人財(cái)產(chǎn)管理制度
- 公共交通車(chē)輛保險(xiǎn)管理制度
- 金融行業(yè)合規(guī)操作手冊(cè)
- 工程計(jì)價(jià)培訓(xùn)
- 2026年入伍訓(xùn)練基礎(chǔ)鞏固強(qiáng)化練習(xí)題附答案
- 2026年粉塵防爆安全管理實(shí)務(wù)題庫(kù)答案詳解
- 設(shè)備維保三級(jí)管理制度
- 浙江省離婚登記協(xié)議書(shū)
- 白內(nèi)障手術(shù)病人的護(hù)理
- 《函數(shù)圖象的信息問(wèn)題》專(zhuān)題課件
- 日志監(jiān)控規(guī)程規(guī)范規(guī)定
- 2025年福建閩投永安抽水蓄能有限公司聯(lián)合招聘17人筆試參考題庫(kù)附帶答案詳解
- 充電站安全培訓(xùn)課件
- 《機(jī)器學(xué)習(xí)》課件-第7章 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)
- 2025-2030中國(guó)智能家居系統(tǒng)配置服務(wù)技術(shù)人才缺口評(píng)估報(bào)告
- 護(hù)士肺功能室進(jìn)修匯報(bào)
- 物業(yè)工程維修培訓(xùn)內(nèi)容
評(píng)論
0/150
提交評(píng)論