版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省渾源縣第七中學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是等差數(shù)列,為數(shù)列的前項和,,,則()A.54 B.71C.81 D.802.已知集合,則()A. B.C. D.3.已知雙曲線,點F為其左焦點,點B,若BF所在直線與雙曲線的其中一條漸近線垂直,則該雙曲線的離心率為()A. B.C. D.4.已知數(shù)列的通項公式為,其前項和為,則滿足的的最小值為()A.30 B.31C.32 D.335.設(shè)、是兩條不同的直線,、、是三個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則6.“楊輝三角”是中國古代數(shù)學(xué)文化的瑰寶之一,最早在中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.567.若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于A.2 B.3C.6 D.98.拋物線的準(zhǔn)線方程為()A B.C. D.9.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣110.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.11.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個 B.1個C.2個 D.3個12.已知斜率為1的直線l過橢圓的右焦點,交橢圓于A,B兩點,則弦AB的長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.類比教材中推導(dǎo)球體積公式的方法,試計算橢圓T:繞y軸旋轉(zhuǎn)一周后所形成的旋轉(zhuǎn)體(我們稱為橄欖球)的體積為________.14.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.15.如圖,正四棱錐的棱長均為2,點E為側(cè)棱PD的中點.若點M,N分別為直線AB,CE上的動點,則MN的最小值為______16.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準(zhǔn)線上的投影分別為,兩點,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在下列所給的三個條件中任選一個,補(bǔ)充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.18.(12分)在平面直角坐標(biāo)系中,圓外的點在軸的右側(cè)運(yùn)動,且到圓上的點的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點的直線交于,兩點,以為直徑的圓與平行于軸的直線相切于點,線段交于點,證明:是的中點19.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)在中,內(nèi)角A、B、C的對邊分別為a、b、c,滿足(1)求A的大??;(2)若,的面積為,求的周長21.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值22.(10分)如圖,C是以為直徑的圓上異于的點,平面平面分別是的中點.(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用等差數(shù)列的前n項和公式求解.【詳解】∵是等差數(shù)列,,∴,得,∴.故選:C.2、C【解析】解一元二次不等式求集合A,再由集合的交運(yùn)算求即可.【詳解】由題設(shè),,∴.故選:C.3、C【解析】設(shè)出雙曲線半焦距c,利用斜率坐標(biāo)公式結(jié)合垂直關(guān)系列式計算作答.【詳解】設(shè)雙曲線半焦距為c,則,直線BF的斜率為,雙曲線的漸近線為:,因直線BF與雙曲線的一條漸近線垂直,則有,即,于是得,而,解得,所以雙曲線的離心率為.故選:C4、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C5、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對選項進(jìn)行逐一判斷即可.【詳解】選項A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項A不正確.選項B.,則正確,故選項B正確.選項C若,則與可能相交,可能異面,也可能平行,故選項C不正確.選項D.若,則與可能相交,可能平行,故選項D不正確.故選:B6、B【解析】由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),可得第8行,第3個數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),故第8行,第3個數(shù)是為故選:B7、D【解析】求出導(dǎo)函數(shù),利用函數(shù)在極值點處的導(dǎo)數(shù)值為0得到a,b滿足的條件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因為在x=1處有極值∴a+b=6∵a>0,b>0∴當(dāng)且僅當(dāng)a=b=3時取等號所以ab的最大值等于9故選D點評:本題考查函數(shù)在極值點處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值需注意:一正、二定、三相等8、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點坐標(biāo)為,準(zhǔn)線方程為:,故選:D.9、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時取最小值故選:C10、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.11、C【解析】由條件,可得,利用不等式的性質(zhì)和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因為,所以.因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號不成立),所以④正確.故選:C.12、C【解析】根據(jù)題意求得直線l的方程,設(shè),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理求得,再利用弦長公式即可得出答案.【詳解】由橢圓知,,所以,所以右焦點坐標(biāo)為,則直線的方程為,設(shè),聯(lián)立,消y得,,則,所以.即弦AB長為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】類比球的體積公式的方法,將橄欖球細(xì)分為無數(shù)個小圓柱體疊加起來【詳解】設(shè)橢圓的方程為:,則令(根據(jù)對稱性,我們只需算出軸上半部分的體積)不妨設(shè),按照平均分為等份,則每一等份都是相同高度的圓柱體,第1個圓柱體的體積的半徑為:第2個圓柱體的體積的半徑為:第個圓柱體的體積的半徑為:則第個圓柱體的體積為:化簡可得:則有:根據(jù)可得:當(dāng)時,則有:故橢圓繞著軸旋轉(zhuǎn)一周后的體積為:而題意中,則橢圓繞著軸旋轉(zhuǎn)一周后的體積為故答案為:14、【解析】先根據(jù)橢圓的方程求得焦點坐標(biāo),然后根據(jù)為正六邊形求得點的坐標(biāo),即點在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標(biāo)為:則點在雙曲線上,可得:又解得:故答案為:15、【解析】根據(jù)題意,先建立空間直角坐標(biāo)系,然后寫出相關(guān)點的坐標(biāo),再寫出相關(guān)的向量,然后根據(jù)點分別為直線上寫出點的坐標(biāo),這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標(biāo)系,則有:,,,,,可得:設(shè),且則有:,可得:則有:故則當(dāng)且僅當(dāng)時,故答案為:16、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知則焦點坐標(biāo)為,∴過焦點且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結(jié)合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結(jié)果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點,故直線的方程為,則其一般式為;若選③直線l的一個方向向量為,則直線的斜率;又其過點,故直線的方程為,則其一般式為;綜上所述:若選擇①②,則直線方程為:;若選擇③,則直線方程為.【小問2詳解】對圓C:,其圓心為,半徑,根據(jù)(1)中所求,若選擇①②,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長;若選擇③,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長.綜上所述,若選擇①②,則;若選擇③,則.18、(1)(2)證明見解析【解析】(1)設(shè)點,求得到圓上的最小距離為,根據(jù)題意得到,整理即可求得曲線的方程;(2)當(dāng)直線的斜率不存在時,顯然成立;當(dāng)直線的斜率存在時,設(shè)直線的方程,聯(lián)立方程組求得和,得到,結(jié)合拋物線的定義和方程求得,,結(jié)合,即可求解.【小問1詳解】解:設(shè)點,(其中),由圓,可得圓心坐標(biāo)為,因為在圓外,所以到圓上的點的最小距離為,又由到圓上的點的最小距離等于它到軸的距離,可得,即,整理得,即曲線的方程為【小問2詳解】解:當(dāng)直線的斜率不存在時,可得點為拋物線的交點,點為坐標(biāo)原點,點為拋物線的準(zhǔn)線與軸的交點,顯然滿足是的中點;當(dāng)直線的斜率存在時,設(shè)直線的方程,設(shè),,,則,聯(lián)立方程組,整理得,因為,且,則,故,由拋物線的定義知,設(shè),可得,所以,又因為,所以,解得,所以,因為在地物線上,所以,即,所以,即是的中點19、(1)(2)【解析】(1)由于在點處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,從而可求出其值域.【小問1詳解】因為函數(shù)在處有極大值,所以,①且②聯(lián)立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數(shù)區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;又,所以在上的值域為.20、(1)(2)【解析】(1)通過正弦定理將邊化為角的關(guān)系,可得,進(jìn)而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進(jìn)而得結(jié)果.【小問1詳解】∵∴由正弦定理,得∴∵,∴,故【小問2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長為21、(1)證明見解析(2)【解析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,∴,設(shè)平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.22、(1)證明見解析(2)【解析】(1)由分別是的中點,得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古2025年赤峰市委黨校度競爭性比選事業(yè)編制工作人員筆試歷年典型考點題庫附帶答案詳解
- 內(nèi)江2025年下半年內(nèi)江市事業(yè)單位招才引智考核招聘62人(成都場)筆試歷年備考題庫附帶答案詳解
- 六安六安市金安區(qū)2025年從城市社區(qū)工作者中招聘5名事業(yè)單位工作人員筆試歷年難易錯考點試卷帶答案解析
- 光明區(qū)2025年3月廣東深圳市光明區(qū)工業(yè)和信息化局招聘專干6人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 保山2025年云南保山龍陵縣衛(wèi)健系統(tǒng)所屬事業(yè)單位校園招聘專業(yè)技術(shù)人員5人筆試歷年備考題庫附帶答案詳解
- 會理市2025年四川會理市考試招聘事業(yè)單位工作人員4名筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 亳州2025年安徽亳州市中醫(yī)院招聘工作人員37人筆試歷年難易錯考點試卷帶答案解析
- 云南省2025云南民族大學(xué)公開招聘普什圖語專任教師(1人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南云南省氣象部門2025年事業(yè)單位招聘42名應(yīng)屆畢業(yè)生(第1號)筆試歷年難易錯考點試卷帶答案解析
- 云南2025年下半年云南省農(nóng)墾局直屬事業(yè)單位招聘11人筆試歷年典型考點題庫附帶答案詳解
- 2026天津市津南創(chuàng)騰經(jīng)濟(jì)開發(fā)有限公司招聘8人筆試參考題庫及答案解析
- 特種作業(yè)培訓(xùn)課件模板
- 2025年時事政治知識考試試題題庫試題附答案完整版
- 高校宿舍管理員培訓(xùn)課件
- 河南省開封市2026屆高三年級第一次質(zhì)量檢測歷史試題卷+答案
- 員工通勤安全培訓(xùn)課件
- 歲末年初安全知識培訓(xùn)課件
- 全國秸稈綜合利用重點縣秸稈還田監(jiān)測工作方案
- 中小企業(yè)人才流失問題及對策分析
- 2026年湖南鐵路科技職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫含答案
- 招標(biāo)人主體責(zé)任履行指引
評論
0/150
提交評論