山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題含解析_第1頁
山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題含解析_第2頁
山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題含解析_第3頁
山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題含解析_第4頁
山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省菏澤市菏澤一中2026屆高二上數學期末質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.52.已知命題:拋物線的焦點坐標為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.3.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.4.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°5.正方體的棱長為2,E,F,G分別為,AB,的中點,則直線ED與FG所成角的余弦值為()A. B.C. D.6.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.7.已知雙曲線的離心率為2,則()A.2 B.C. D.18.下列有關命題的表述中,正確的是()A.命題“若是偶數,則,都是偶數”的否命題是假命題B.命題“若為正無理數,則也是無理數”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題9.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上10.下列說法:①將一組數據中的每個數據都加上或減去同一個常數后,方差不變;②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現錯誤;③回歸直線就是散點圖中經過樣本數據點最多的那條直線;④如果兩個變量的線性相關程度越高,則線性相關系數就越接近于;其中錯誤說法的個數是()A. B.C. D.11.在區(qū)間內隨機地取出兩個數,則兩數之和小于的概率是()A. B.C. D.12.設為可導函數,且滿足,則曲線在點處的切線的斜率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為___________.14.在單位正方體中,點E為AD的中點,過點B,E,的平面截該正方體所得的截面面積為______.15.設函數f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關系為________16.已知兩平行直線與間的距離為3,則C的值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓經過點,左焦點為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點,過點且斜率為的直線交橢圓于兩點,求的面積.18.(12分)已知定義域為的函數是奇函數,其中為指數函數且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數的取值范圍;19.(12分)已知函數.(1)求曲線在點處的切線的方程.(2)若直線為曲線切線,且經過坐標原點,求直線的方程及切點坐標.20.(12分)設命題p:實數x滿足,其中;命題q:若,且為真,求實數x的取值范圍;若是的充分不必要條件,求實數m的取值范圍21.(12分)已知公差不為0的等差數列,前項和為,首項為,且成等比數列.(1)求和;(2)設,記,求.22.(10分)已知的展開式中前三項的二項式系數之和為46,(1)求n;(2)求展開式中系數最大的項

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】依據拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C2、D【解析】求出的焦點坐標,及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進而判斷出答案.【詳解】拋物線的焦點坐標為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項均為假命題.故選:D3、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質可得當時,弦長最小,當過點時,弦長最長,再根據向量數量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D4、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當∠EGF=60°時,∠FEG=60°,當∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B5、B【解析】建立空間直角坐標系,利用空間向量坐標運算即可求解.【詳解】如圖所示建立適當空間直角坐標系,故選:B6、D【解析】設橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據余弦定理可得到,利用基本不等式可得結論【詳解】如圖,設橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題7、D【解析】由雙曲線的性質,直接表示離心率,求.【詳解】由雙曲線方程可知,因為,所以,解得:,又,所以.故選:D【點睛】本題考查雙曲線基本性質,意在考查數形結合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.構造法:根據條件,可構造出的齊次方程,通過等式兩邊同時除以,進而得到關于的方程.8、C【解析】對于選項A:根據偶數性質即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數,則,不都是偶數,若,都是偶數,則一定是偶數,從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數,則也為正無理數,當,即為無理數,但是有理數,故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.9、A【解析】根據題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設,由題意,得到,,再由得到,求出點的軌跡,即可得出結果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內的一動點,所以可設,因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于常考題型.10、C【解析】根據統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數據的波動大小,將一組數據中的每個數據都加上或減去同一個常數后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經過樣本數據點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關程度越高,則線性相關系數就越接近于,不正確,應為相關系數的絕對值就越接近于;綜上,其中錯誤的個數是;故選:C.11、C【解析】利用幾何概型的面積型,確定兩數之和小于的區(qū)域,進而根據面積比求概率.【詳解】由題意知:若兩個數分別為,則,如上圖示,陰影部分即為,∴兩數之和小于的概率.故選:C12、D【解析】由題,為可導函數,,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數定義的形式二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化成拋物線的標準方程即可.【詳解】由題意知,,則焦點坐標為.故答案為:14、【解析】根據題意,取的中點,連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進而可得為菱形,連接、,求出、的長,計算可得答案【詳解】根據題意,取的中點,連接、、、,易得,,則四邊形為平行四邊形,過點,,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:15、a>b【解析】構造函數F(x)=xf(x),利用F(x)的單調性求解即可.【詳解】設函數F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.16、【解析】根據兩條平行直線之間的距離公式即可得解.【詳解】兩平行直線與間的距離為3,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由橢圓的定義求出的值,由求出,代入,得到橢圓的方程;(Ⅱ)由點斜式求出直線的方程,設,聯(lián)立直線與橢圓方程,求出的值,再算出的面積試題解析(Ⅰ)由橢圓的定義得:又,故,∴橢圓的方程為:.(Ⅱ)過的直線方程為,,聯(lián)立,設,則,∴的面積.點睛:本題主要考查了求橢圓的方程,直線與橢圓相交時弦長的計算等,屬于中檔題.在(Ⅱ)中,注意的面積的計算公式18、(1);(2).【解析】(1)設(且),因為的圖象過點,求得a的值,再根據函數f(x)是奇函數,利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數即可;(2)將分式分離常數后,利用指數函數的性質可以判定f(x)在R上單調遞減,進而結合奇函數的性質將不等式轉化為二次不等式,根據二次函數的圖象和性質,求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(且),因為的圖象過點,可得,解得,即,所以,又因為為上的奇函數,可得,即,解得,經檢驗,符合,所以(2)由函數,可得在上單調遞減,又因為為奇函數,所以,所以,即,又因為對任意的,不等式恒成立,令,即對任意的恒成立,可得,即,解得,所以實數的取值范圍為【點睛】本題考查函數的奇偶性,指數函數及其性質和函數不等式恒成立問題,關鍵是利用函數的單調性和奇偶性將不等式轉化為二次不等式在閉區(qū)間上恒成立問題,然后利用二次函數的圖象轉化為二次函數的端點值滿足的條件.另外注意,第一問中,利用特值f(0)=0求得解析式后,要注意檢驗對于任意的實數x,f(x)=-f(-x)恒成立.19、(1);(2)直線的方程為,切點坐標為.【解析】(1)先求導數,再根據導數幾何意義得切線斜率,最后根據點斜式得結果,(2)設切點,根據導數幾何意義得切線斜率,根據點斜式得切線方程,再根據切線過坐標原點解得結果.【詳解】(1).所以在點處的切線的斜率,∴切線的方程為;(2)設切點為,則直線的斜率為,所以直線的方程為:,所以又直線過點,∴,整理,得,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論