版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
新疆昌吉市2026屆高二上數(shù)學期末教學質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.不等式解集為()A. B.C. D.2.對任意實數(shù),在以下命題中,正確的個數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.3.橢圓上的一點M到其左焦點的距離為2,N是的中點,則等于()A.1 B.2C.4 D.84.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.85.從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.6.一個盒子里有3個分別標有號碼為1,2,3小球,每次取出一個,記下它的標號后再放回盒子中,共取2次,則在兩次取得小球中,標號最大值是3的概率為()A. B.C. D.7.甲烷是一種有機化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個氫原子之間的距離(H-H鍵長)相等,碳原子到四個氫原子的距離(C-H鍵長)均相等,任意兩個H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個氫原子為頂點的四面體的體積為()A. B.C. D.8.已知等差數(shù)列中,、是的兩根,則()A B.C. D.9.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.510.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.211.以,為焦點,且經(jīng)過點的橢圓的標準方程為()A. B.C. D.12.若圓上至少有三個點到直線的距離為1,則半徑的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)據(jù)6,8,9,10,7的方差為______14.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________15.若關(guān)于的不等式的解集為R,則的取值范圍是______.16.經(jīng)過、兩點的直線斜率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小18.(12分)已知橢圓的一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標準方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標軸,且點B與點A的橫坐標之差為,求直線AP的方程.19.(12分)已知數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;21.(12分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當垂直長軸時,.(1)求橢圓的標準方程;(2)設直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.22.(10分)已知拋物線過點,O為坐標原點(1)求焦點的坐標及其準線方程;(2)拋物線C在點A處的切線記為l,過點A作與切線l垂直的直線,與拋物線C的另一個交點記為B,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】化簡一元二次不等式的標準形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.2、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因為,則,根據(jù)不等式性質(zhì)得,故正確;②當時,,而,故錯誤;③因為,所以,即,故正確;④當時,,故錯誤;故選:B3、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點,為的中點,線段為中位線,∴.故選:C.4、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.5、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B6、C【解析】求出兩次取球都沒有取到3的概率,再利用對立事件的概率公式計算作答.【詳解】依題意,每次取到標號為3的球的事件為A,則,且每次取球是相互獨立的,在兩次取得小球中,標號最大值是3的事件M,其對立事件是兩次都沒有取到標號為3的球的事件,,則有,所以在兩次取得小球中,標號最大值是3的概率為.故選:C7、A【解析】利用余弦定理求得,計算出正四面體的高,從而計算出正四面體的體積.【詳解】設,則由余弦定理知:,解得,故該正四面體的棱長均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A8、B【解析】利用韋達定理結(jié)合等差中項的性質(zhì)可求得的值,再結(jié)合等差中項的性質(zhì)可求得結(jié)果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.9、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎題.10、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數(shù)的關(guān)系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.11、B【解析】根據(jù)焦點在x軸上,c=1,且過點,用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因為焦點在x軸上,所以C不正確;又因為c=1,故排除D;將代入得,故A錯誤,所以選B.故選:B12、B【解析】先求出圓心到直線的距離為,由此可知當圓的半徑為時,圓上恰有三點到直線的距離為,當圓的半徑時,圓上恰有四個點到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標為,圓心到直線為,∵圓上至少有三個點到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先求出數(shù)據(jù)的平均值,再應用方差公式求它們的方差.【詳解】由題設,平均值為,∴方差.故答案為:2.14、【解析】當點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:15、【解析】分為和考慮,當時,根據(jù)題意列出不等式組,求出的取值范圍.【詳解】當?shù)茫?,滿足題意;當時,要想保證關(guān)于的不等式的解集為R,則要滿足:,解得:,綜上:的取值范圍為故答案為:16、【解析】利用斜率公式可求得結(jié)果.【詳解】由斜率公式可知,直線的斜率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)設等差數(shù)列的公差,等比數(shù)列的公比,由已知列式計算得解.(2)由(1)的結(jié)論,用等比數(shù)列前n項和公式求出,用裂項相消法求出,再比較大小作答.【小問1詳解】設等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,,整理得:,解得,所以,.【小問2詳解】由(1)知,,數(shù)列是首項為,公比為的等比數(shù)列,則,,,則,用數(shù)學歸納法證明,,①當時,左邊,右邊,左邊>右邊,即原不等式成立,②假設當時,不等式成立,即,則,即時,原不等式成立,綜合①②知,,成立,因此,,即,所以.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標,同理可得B點坐標,結(jié)合橫坐標之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標準方程是;(Ⅱ)由題可知點,設直線AP的斜率為k,由題意知,直線BP的斜率為,設,,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當時,直線BP的方程為,經(jīng)驗證與橢圓C相切,不符合題意;當時,直線BP的方程為,符合題意.∴直線AP得方程為.【點睛】關(guān)鍵點點睛:兩條直線關(guān)于直線對稱,兩直線的傾斜角互補,斜率互為相反數(shù).19、(1)證明見解析,(2)【解析】(1)由,取倒數(shù)得到,再利用等差數(shù)列的定義求解;(2)由(1)得到,利用錯位相減法求解.【小問1詳解】證明:由,以及,顯然,所以,即,所以數(shù)列是首項為,公差為的等差數(shù)列,所以,所以;【小問2詳解】由(1)可得,,所以數(shù)列的前項和①所以②則由②-①可得:,所以數(shù)列的前項和.20、(1);(2)證明見解析,.【解析】(1)設兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設,,,,設出直線方程,聯(lián)立方程組,利用韋達定理法及向量的數(shù)量積的坐標表示,即可得到定點.【小問1詳解】設兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設,,設直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點21、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)由題意,點橢圓上的一動點,且的最小值是1,得,因為當垂直長軸時,可得,所以,即,又由,解得,所以橢圓的標準方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設切線的方程為,聯(lián)立,整理得,因為直線與橢圓相切,所以,化簡得,則,因為點到直線的距離,所以,即,故的面積為,因為,可得,即,函數(shù)在上單調(diào)遞增,所以,當時取等號,則,即面積的最大值為.當時,此時,所以直線的方程為.【點睛】對于直線與橢圓的位置關(guān)系的處理方法:1、判定與應用直線與橢圓的位置關(guān)系,一把轉(zhuǎn)化為研究直線方程與橢圓組成的方程組的解得個數(shù),結(jié)合判別式求解;2、對于過定點的直線,也可以通過定點在橢圓的內(nèi)部或在橢圓上,判定直線與橢圓的位置關(guān)系.22、(1)焦點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 播音員入團申請書
- 物流配送服務流程與質(zhì)量監(jiān)控指南(標準版)
- 2025年礦山安全監(jiān)管與事故處理指南
- 2026年施工過程中安全事故的歷程分析
- 校學生會部員申請書
- 2026年在房地產(chǎn)市場中如何進行個性化推廣
- 2026年傳統(tǒng)節(jié)日的由來與習俗
- 小度小度申請書
- 不予立案復議申請書樣本
- 2025年企業(yè)人力資源與組織發(fā)展手冊
- GB/T 45752-2025礦用車載滅火系統(tǒng)安全技術(shù)要求
- 安置房舉行活動方案
- 國家開放大學《理工英語4》期末機考題庫
- 貨車司機外包合同協(xié)議
- 游戲推廣合作協(xié)議書范本
- 房地產(chǎn)企業(yè)分紅權(quán)激勵方案
- 車輛維修安全培訓
- 2025版國家開放大學法學本科《知識產(chǎn)權(quán)法》期末紙質(zhì)考試總題庫
- 五年級上冊小數(shù)四則混合運算100道及答案
- 九宮數(shù)獨200題(附答案全)
- 部編版八年級上冊語文《期末考試卷》及答案
評論
0/150
提交評論