版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市朝陽區(qū)2026屆數(shù)學高一上期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)在區(qū)間上的值域為,對任意實數(shù)都有,則實數(shù)的取值范圍是()A. B.C. D.2.若,則有()A.最大值 B.最小值C.最大值2 D.最小值23.函數(shù)與則函數(shù)所有零點的和為A.0 B.2C.4 D.84.如圖,在棱長為1的正方體中,三棱錐的體積為()A. B.C. D.5.已知等邊兩個頂點,且第三個頂點在第四象限,則邊所在的直線方程是A. B.C. D.6.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.7.下列各組函數(shù)中,表示為同一個函數(shù)的是A.與 B.與C.與 D.與且8.已知函數(shù)的圖像如圖所示,則A. B.C. D.9.某三棱錐的三視圖如圖所示,則該三棱錐的體積是A. B.C. D.10.函數(shù)y=的單調(diào)遞減區(qū)間是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的圖象必過定點___________12.某超市對6個時間段內(nèi)使用兩種移動支付方式的次數(shù)用莖葉圖作了統(tǒng)計,如圖所示,使用支付方式的次數(shù)的極差為______;若使用支付方式的次數(shù)的中位數(shù)為17,則_______.支付方式A支付方式B420671053126m9113.已知,是相互獨立事件,且,,則______14.大西洋鮭魚每年都要逆流而上游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速v(單位:)可以表示為,其中L表示鮭魚的耗氧量的單位數(shù),當一條鮭魚以的速度游動時,它的耗氧量的單位數(shù)為___________.15.已知函數(shù)且關(guān)于的方程有四個不等實根,寫出一個滿足條件的值________16.用半徑為的半圓形紙片卷成一個圓錐,則這個圓錐的高為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.我國所需的高端芯片很大程度依賴于國外進口,“缺芯之痛”關(guān)乎產(chǎn)業(yè)安全、國家經(jīng)濟安全.如今,我國科技企業(yè)正在芯片自主研發(fā)之路中不斷崛起.根據(jù)市場調(diào)查某手機品牌公司生產(chǎn)某款手機的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬部并全部銷售完,每萬部的銷售收入為萬美元,且當該公司一年內(nèi)共生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元.(1)寫出年利潤(萬美元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式:(2)當年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.18.證明:函數(shù)是奇函數(shù).19.已知直線(1)求與垂直,且與兩坐標軸圍成的三角形面積為4直線方程:(2)已知圓心為,且與直線相切求圓的方程;20.已知函數(shù)是二次函數(shù),,(1)求的解析式;(2)解不等式21.已知集合,集合.(1)若,求和(2)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)關(guān)于對稱,討論與的關(guān)系,結(jié)合其區(qū)間單調(diào)性及對應(yīng)值域求的范圍.【詳解】由題設(shè),,易知:關(guān)于對稱,又恒成立,當時,,則,可得;當時,,則,可得;當,即時,,則,即,可得;當,即時,,則,即,可得;綜上,.故選:D.【點睛】關(guān)鍵點點睛:利用分段函數(shù)的性質(zhì),討論其對稱軸與給定區(qū)間的位置關(guān)系,結(jié)合對應(yīng)值域及求參數(shù)范圍.2、D【解析】構(gòu)造基本不等式即可得結(jié)果.【詳解】∵,∴,∴,當且僅當,即時,等號成立,即有最小值2.故選:D.【點睛】本題主要考查通過構(gòu)造基本不等式求最值,屬于基礎(chǔ)題.3、C【解析】分析:分別作與圖像,根據(jù)圖像以及對稱軸確定零點以及零點的和.詳解:分別作與圖像,如圖,則所有零點的和為,選C.點睛:對于方程解的個數(shù)(或函數(shù)零點個數(shù))問題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖確定其中參數(shù)范圍.從圖象的最高點、最低點,分析函數(shù)的最值、極值;從圖象的對稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性等4、A【解析】用正方體的體積減去四個三棱錐的體積【詳解】由,故選:A5、C【解析】如圖所示,直線額傾斜角為,故斜率為,由點斜式得直線方程為.考點:直線方程.6、A【解析】由圖象確定以及周期,進而得出,再由得出的值.【詳解】顯然因為,所以,所以由得所以,即,因為,所以所以.故選:A【點睛】本題主要考查了由函數(shù)圖象確定正弦型函數(shù)的解析式,屬于中檔題.7、D【解析】A,B兩選項定義域不同,C選項對應(yīng)法則不同,D選項定義域和對應(yīng)法則均相同,即可得選項.【詳解】A.,,兩個函數(shù)的定義域不同,不是同一函數(shù),B.,,兩個函數(shù)的定義域不同,不是同一函數(shù),C.,兩個的對應(yīng)法則不相同,不是同一函數(shù)D.,,兩個函數(shù)的定義域和對應(yīng)法則相同是相同函數(shù),故選D【點睛】此題是個基礎(chǔ)題.本題考查函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系,相同的函數(shù)必然具有相同的定義域、值域、對應(yīng)關(guān)系.要使數(shù)與的同一函數(shù),必須滿足定義域和對應(yīng)法則完全相同即可,注意分析各個選項中的個函數(shù)的定義域和對應(yīng)法則是否相同,通常的先后順序為先比較定義域是否相同,其次看對應(yīng)關(guān)系或值域..8、B【解析】本題首先可以通過圖像得出函數(shù)的周期,然后通過函數(shù)周期得出的值,再然后通過函數(shù)過點求出的值,最后將帶入函數(shù)解析式即可得出結(jié)果【詳解】因為由圖像可知,解得,所以,,因為由圖像可知函數(shù)過點,所以,解得,取,,,所以,故選B【點睛】本題考查了三角函數(shù)的相關(guān)性質(zhì),主要考查了三角函數(shù)圖像的相關(guān)性質(zhì),考查了三角函數(shù)的周期性的求法,考查計算能力,考查數(shù)形結(jié)合思想,是中檔題9、B【解析】由三視圖判斷底面為等腰直角三角形,三棱錐的高為2,則,選B.【考點定位】三視圖與幾何體的體積10、A【解析】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,再結(jié)合二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間【詳解】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,由二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間為(-∞,1),所以函數(shù)的單調(diào)遞減區(qū)間為(-∞,1).故答案為A【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,考查復合函數(shù)的單調(diào)性,意在考查學生對這些知識的掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】f(x)=k(x-1)-ax-1,x=1時,y=f(x)=-1,∴圖象必過定點(1,-1).12、①.;②.【解析】根據(jù)極差,中位數(shù)的定義即可計算.【詳解】解:由莖葉圖可知:使用支付方式的次數(shù)的極差為:;使用支付方式的次數(shù)的中位數(shù)為17,易知:,解得:.故答案為:;.13、【解析】由相互獨立事件的性質(zhì)和定義求解即可【詳解】因為,是相互獨立事件,所以,也是相互獨立事件,因為,,所以,故答案為:14、8100【解析】將代入,化簡即可得答案.【詳解】因為鮭魚的游速v(單位:)可以表示為:,所以,當一條鮭魚以的速度游動時,,∴,∴故答案為:8100.15、(在之間都可以).【解析】畫出函數(shù)的圖象,結(jié)合圖象可得答案.【詳解】如圖,當時,,當且僅當時等號成立,當時,,要使方程有四個不等實根,只需使即可,故答案為:(在之間都可以).16、【解析】根據(jù)圓錐的底面周長等于半圓形紙片的弧長建立等式,再根據(jù)半圓形紙片的半徑為圓錐的母線長求解即可.【詳解】由題得,半圓形紙片弧長為,設(shè)圓錐的底面半徑為,則,故圓錐的高為.故答案為:【點睛】本題主要考查了圓錐展開圖中的運算,重點是根據(jù)圓錐底面的周長等于展開后扇形的弧長,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)32萬部,最大值為6104萬美元.【解析】(1)先由生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元,解得,然后由,將代入即可.(2)當時利用二次函數(shù)的性質(zhì)求解;當時,利用基本不等式求解,綜上對比得到結(jié)論.【詳解】(1)因為生產(chǎn)該款手機2萬部并全部銷售完時,年利潤為704萬美元.所以,解得,當時,,當時,.所以(2)①當時,,所以;②當時,,由于,當且僅當,即時,取等號,所以此時的最大值為5760.綜合①②知,當,取得最大值為6104萬美元.【點睛】思路點睛:應(yīng)用題的基本解題步驟:(1)根據(jù)實際問題抽象出函數(shù)的解析式,再利用基本不等式求得函數(shù)的最值;(2)設(shè)變量時一般要把求最大值或最小值的變量定義為函數(shù);(3)解應(yīng)用題時,要注意變量的實際意義及其取值范圍;(4)在應(yīng)用基本不等式求函數(shù)最值時,若等號取不到,可利用函數(shù)的單調(diào)性求解18、證明見解析【解析】由奇偶性的定義證明即可得出結(jié)果.【詳解】中,,即,的定義域為,關(guān)于原點對稱,,,函數(shù)是奇函數(shù).19、(1)或;(2)【解析】分析:(1)由題意,設(shè)所求的直線方程為,分離令和,求得在坐標軸上的截距,利用三角形的面積公式,求得的值,即可求解;(2)設(shè)圓的半徑為,因為圓與直線相切,列出方程,求得半徑,即可得到圓的標準方程.詳解:(1)∵所求的直線與直線垂直,∴設(shè)所求的直線方程為,∵令,得;令,得.∵所求的直線與兩坐標軸圍成的三角形面積為4∴,∴∴所求的直線方程為或(2)設(shè)圓的半徑為,∵圓與直線相切∴∴所求的圓的方程為點睛:本題主要考查了直線方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,著重考查了推理與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)財務(wù)管理制度建立指南
- 2026年化工分析(電化學分析方法)試題及答案
- 2025年大學音樂學(音樂美學)試題及答案
- 2025年大學臨床醫(yī)學(臨床診療技巧)試題及答案
- 2026年SEO優(yōu)化(關(guān)鍵詞排名技巧)試題及答案
- 2025年高職機床操作(機床操作實操)試題及答案
- 2025年高職(數(shù)字媒體技術(shù))動畫設(shè)計試題及答案
- 2025年大學第三學年(市場營銷策劃)方案設(shè)計階段測試題及答案
- 2025年大學大三(數(shù)控機床故障診斷)常見故障排除階段測試題及答案
- 2025年中職數(shù)控技術(shù)應(yīng)用(數(shù)控應(yīng)用技術(shù))試題及答案
- 邀約來訪活動策劃方案(3篇)
- 2025年煙臺理工學院馬克思主義基本原理概論期末考試筆試真題匯編
- 2025年保險理賠流程操作規(guī)范手冊
- 彩鋼瓦屋面施工組織方案
- 期末測試卷-2024-2025學年外研版(一起)英語六年級上冊(含答案含聽力原文無音頻)
- 橋架彎制作方法及流程
- DB13(J)-T 298-2019 斜向條形槽保溫復合板應(yīng)用技術(shù)規(guī)程(2024年版)
- HG/T 3811-2023 工業(yè)溴化物試驗方法 (正式版)
- (正式版)SHT 3229-2024 石油化工鋼制空冷式熱交換器技術(shù)規(guī)范
- 健康政策與經(jīng)濟學
- GB/T 42506-2023國有企業(yè)采購信用信息公示規(guī)范
評論
0/150
提交評論