版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市長沙縣九中2026屆高二上數(shù)學期末考試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.12.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列3.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.4.下列結論正確的是()A.若,則 B.若,則C.若,則 D.若,則5.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標準差分別為和,則()AB.C.D.6.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有7.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.38.已知關于x的不等式的解集為空集,則的最小值為()A. B.2C. D.49.設函數(shù),當自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.1110.已知方程表示的曲線是焦點在軸上的橢圓,則的取值范圍A. B.C. D.11.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內任取一點,則該點取自黃金矩形內的概率為()A. B.C. D.12.已知等比數(shù)列{an}中,,,則()A. B.1C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.設,若直線與直線平行,則的值是________14.已知函數(shù)有零點,則的取值范圍是___________.15.若“,”是真命題,則實數(shù)m的取值范圍________.16.如圖,在三棱錐中,,二面角的余弦值為,若三棱錐的體積為,則三棱錐外接球的表面積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉化為普通方程;(2)求的長.18.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標19.(12分)如圖所示,橢圓的左、右焦點分別為、,左、右頂點分別為、,為橢圓上一點,連接并延長交橢圓于點,已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設點的坐標為①當,,成等差數(shù)列時,求點的坐標;②若直線、分別與直線交于點、,以為直徑的圓是否經過某定點?若經過定點,求出定點坐標;若不經過定點,請說明理由20.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.21.(12分)平行六面體,(1)若,,,,,,求長;(2)若以頂點A為端點的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值22.(10分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】計算后,根據判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.2、D【解析】由,化簡得,結合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.3、B【解析】根據拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.4、C【解析】先舉例說明ABD不成立,再根據不等式性質說明C成立.【詳解】當時,滿足,但不成立,所以A錯;當時,滿足,但不成立,所以B錯;當時,滿足,但不成立,所以D錯;因為所以,又,因此同向不等式相加得,即C對;故選:C【點睛】本題考查不等式性質,考查基本分析判斷能力,屬基礎題.5、B【解析】直接根據圖表得到答案.【詳解】根據圖表:樣本數(shù)據均小于等于10,樣本數(shù)據均大于等于10,故;樣本數(shù)據波動大于樣本數(shù)據,故.故選:B.6、C【解析】全稱命題的否定是特稱命題【詳解】根據全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C7、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A8、D【解析】根據一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關鍵在于由一元二次不等式的解集的情況得出的關系,再將所求的式子運用不等式的性質降低元的個數(shù),運用均值不等式,是中檔題.9、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.10、A【解析】根據條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點在軸的橢圓,,解得:.故選A【點睛】本題考查根據橢圓的焦點位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎題型.11、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設,則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內任取一點,則該點取自黃金矩形內的概率為:.故選:B.12、D【解析】設公比為,然后由已知條件結合等比數(shù)列的通項公式列方程求出,從而可求出,【詳解】設公比為,因為等比數(shù)列{an}中,,,所以,所以,解得,所以,得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當時,兩直線分別為和,此時,兩直線不平行;當時,要使得兩直線平行,即,解得,.故答案為:14、【解析】利用導數(shù)可求得函數(shù)的最小值,要使函數(shù)有零點,只要,求得函數(shù)的最小值,即可得解.【詳解】解:,當時,,當時,,所以在上遞減,在上遞增,所以,因為函數(shù)有零點,所以,解得.故答案為:.15、【解析】由于“,”是真命題,則實數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,據此即可求出結果.【詳解】由于“,”是真命題,則實數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,即.故答案為:【點睛】本題主要考查了存在量詞命題的概念的理解,以及數(shù)學轉換思想,屬于基礎題.16、【解析】取的中點,連接,,過點A作,垂足為,設,利用三角形的邊角關系求出,利用錐體的體積公式求出的值,確定三棱錐外接球的球心,求解外接球的半徑,由表面積公式求解即可【詳解】取的中點,連接,,過點A作,交DE的延長線于點,所以為二面角的平面角,設,則,,所以,所以,EH=,因為三棱錐的體積為,所以,解得:,,設外接圓的圓心為,三棱錐外接球的球心為,連接,,,過點O作OF⊥AH于點F,則,,,,設,則,,由勾股定理得:,解得:,所以三棱錐外接球的半徑滿足,則三棱錐的外接球的表面積為故答案為:【點睛】本題考查了幾何體的外接球問題,棱錐的體積公式的理解與應用,解題的關鍵是確定外接球球心的位置,三棱錐的外接球的球心在過各面外心且與此面垂直的直線上,由此結論可以找到外接球的球心,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.18、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結合點坐標求AB的垂直平分線,根據已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設點M所在直線方程為,所以,所以或,當時,聯(lián)立得:或,當時,聯(lián)立,無解;所以或19、(1);(2)①或;②過定點、,理由見解析.【解析】(1)由焦點三角形的周長、離心率求橢圓參數(shù),即可得橢圓方程.(2)①由(1)可得,結合橢圓的定義求,即可確定的坐標;②由題設,求直線、的方程,進而求、坐標,即可得為直徑的圓的方程,令求橫坐標,即可得定點.【小問1詳解】由題設,易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當時,,又,∴,可得或.∴為直徑的圓過定點、.【點睛】關鍵點點睛:第二問,應用點斜式寫出直線、的方程,再求、坐標,根據定義求為直徑的圓的方程,最后令及在橢圓上求定點.20、(1);(2).【解析】(1)根據導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】設曲線的切點坐標為,由,所以過該切點的切線的斜率為,因此該切線方程為:,因為直線與函數(shù)的圖象相切,所以,因為直線與函數(shù)的圖象相切,且函數(shù)過原點,所以曲線的切點為,于是有,即;【小問2詳解】由可得:,當時,顯然不成立,當時,由,設函數(shù),,,當時,,單調遞減,當時,,單調遞減,當時,,單調遞增,因此當時,函數(shù)有最小值,最小值為,而,當時,,函數(shù)圖象如下圖所示:方程有兩個不同的實數(shù)解,轉化為函數(shù)和函數(shù)的圖象,在當時,有兩個不同的交點,由圖象可知:,故a的取值范圍為.【點睛】關鍵點睛:利用常變量分離法,結合轉化法進行求解是解題的關鍵.21、(1);(2).【解析】(1)由,可得,再利用數(shù)量積運算性質即可得出;(2)以為一組基底,設與所成的角為,由求解.【小問1詳解】,,,,∴,;【小問2詳解】∵,,∴,∵,∴,∵=8,∴,設與所成的角為,則.22、(1)證明見解析:(2)【解析】(1)代入,求導分析函數(shù)單調性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 攝像頭行業(yè)代理申請書
- 2025年旅游酒店業(yè)服務規(guī)范
- 實習提前結束的申請書
- 高校干部掛職鍛煉申請書
- 2025年食品生產與質量管理指南
- 2026年地質勘察中的地球物理方法
- 2026年水土保持與工程地質環(huán)境評價
- 臨淄區(qū)法律援助申請書
- 企業(yè)主貸款申請書范文
- 查閱法律文書申請書
- 《跨境電商基礎與實務(第3版慕課版)》全套教學課件
- 礦山安全生產標準化
- 魯科版高中化學選擇性必修第一冊第1章章末復習建構課課件
- 川省物業(yè)服務收費管理細則
- DB34T 1991-2013 安徽省建筑工程項目信息編碼標準
- 民法典勞動合同(2024版)
- JJF 2118-2024壓力式六氟化硫氣體密度控制器校驗儀校準規(guī)范
- 股骨下段慢性骨髓炎的護理
- 環(huán)氧樹脂砂漿平涂地坪施工方案
- 蘇教版六年級數(shù)學上冊期末試卷帶答案【可打印】-
- 固定動火區(qū)申請表、告知書、管理規(guī)定
評論
0/150
提交評論