版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省茂名市第十中學2026屆數(shù)學高一上期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,,則等于()A. B.C. D.2.若,分別是方程,的解,則關于的方程的解的個數(shù)是()A B.C. D.3.如圖正方體,棱長為1,為中點,為線段上的動點,過的平面截該正方體所得的截面記為,則下列命題正確的是當時,為四邊形;當時,為等腰梯形;當時,與交點R滿足;當時,為六邊形;當時,的面積為A. B.C. D.4.若函數(shù)(且)的圖像經過定點P,則點P的坐標是()A. B.C. D.5.“”是“函數(shù)為偶函數(shù)”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.設且則()A. B.C. D.7.給出下列四種說法:①若平面,直線,則;②若直線,直線,直線,則;③若平面,直線,則;④若直線,,則.其中正確說法的個數(shù)為()A.個 B.個C.個 D.個8.在空間直角坐標系中,點關于面對稱的點的坐標是A. B.C. D.9.為了得到函數(shù)的圖像,只需將函數(shù)的圖像上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.已知函數(shù)則滿足的實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1,空氣的溫度是θ0℃,那么t后物體的溫度θ(單位:)可由公式(k為正常數(shù))求得.若,將55的物體放在15的空氣中冷卻,則物體冷卻到35所需要的時間為___________.12.若()與()互為相反數(shù),則的最小值為______.13.已知,且是第三象限角,則_____;_____14.放射性物質鐳的某種同位素,每經過一年剩下的質量是原來的.若剩下的質量不足原來的一半,則至少需要(填整數(shù))____年.(參考數(shù)據(jù):,)15.已知函數(shù)是冪函數(shù),且在x∈(0,+∞)上遞減,則實數(shù)m=________16.若不等式在上恒成立,則實數(shù)a的取值范圍為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某商品上市天內每件的銷售價格(元)與時間(天)函數(shù)的關系是,該商品的日銷售量(件)與時間(天)的函數(shù)關系是.(1)求該商品上市第天的日銷售金額;(2)求這個商品的日銷售金額的最大值.18.已知集合,或(1)若,求a取值范圍;(2)若,求a的取值范圍19.已知函數(shù),,其中(1)寫出的單調區(qū)間(無需證明);(2)求在區(qū)間上的最小值;(3)若對任意,均存在,使得成立,求實數(shù)的取值范圍20.設函數(shù).(1)當時,求函數(shù)的零點;(2)當時,判斷的奇偶性并給予證明;(3)當時,恒成立,求m的最大值.21.已知函數(shù)是定義在R上的奇函數(shù)(1)用定義法證明為增函數(shù);(2)對任意,都有恒成立,求實數(shù)k的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先解不等式,再由交集的定義求解即可【詳解】由題,因為,所以,即,所以,故選:A【點睛】本題考查集合的交集運算,考查利用指數(shù)函數(shù)單調性解不等式2、B【解析】∵,分別是方程,的解,∴,,∴,,作函數(shù)與的圖象如下:結合圖象可以知道,有且僅有一個交點,故,即分類討論:()當時,方程可化為,計算得出,()當時,方程可化,計算得出,;故關于的方程的解的個數(shù)是,本題選擇B選項.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍3、D【解析】由已知根據(jù)的不同取值,分別作出不同情況下的截面圖形,利用數(shù)形結合思想能求出結果【詳解】當時,如圖,是四邊形,故正確當時,如圖,為等腰梯形,正確;當時,如圖,由三角形與三角形相似可得,由三角形與三角形相似可得,,正確當時,如圖是五邊形,不正確;當時,如圖是菱形,面積為,正確,正確的命題為,故選D【點睛】本題主要考查正方體的截面,意在考查空間想象能力,解題時要認真審題,注意數(shù)形結合思想的合理運用,是中檔題4、B【解析】由函數(shù)圖像的平移變換或根據(jù)可得.【詳解】因為,所以當,即時,函數(shù)值為定值0,所以點P坐標為.另解:因為可以由向右平移一個單位長度后,再向下平移1個單位長度得到,由過定點,所以過定點.故選:B5、A【解析】根據(jù)充分必要條件定義判斷【詳解】時,是偶函數(shù),充分性滿足,但時,也是偶函數(shù),必要性不滿足應是充分不必要條件故選:A6、C【解析】試題分析:由已知得,,去分母得,,所以,又因為,,所以,即,選考點:同角間的三角函數(shù)關系,兩角和與差的正弦公式7、D【解析】根據(jù)線面關系舉反例否定命題,根據(jù)面面平行定義證命題正確性.【詳解】若平面,直線,則可異面;若直線,直線,直線,則可相交,此時平行兩平面交線;若直線,,則可相交,此時平行兩平面交線;若平面,直線,則無交點,即;選D.【點睛】本題考查線面平行關系,考查空間想象能力以及簡單推理能力.8、C【解析】關于面對稱的點為9、B【解析】利用誘導公式,的圖象變換規(guī)律,得出結論【詳解】解:為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點向右平移個單位長度,故選:B10、B【解析】根據(jù)函數(shù)的解析式,得出函數(shù)的單調性,把不等式,轉化為相應的不等式組,即可求解.【詳解】由題意,函數(shù),可得當時,,當時,函數(shù)在單調遞增,且,要使得,則,解得,即不等式的解集為,故選:B.【點睛】思路點睛:該題主要考查了函數(shù)的單調性的應用,解題思路如下:(1)根據(jù)函數(shù)的解析式,得出函數(shù)單調性;(2)合理利用函數(shù)的單調性,得出不等式組;(3)正確求解不等式組,得到結果.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】將數(shù)據(jù),,,代入公式,得到,解指數(shù)方程,即得解【詳解】將,,,代入得,所以,,所以,即.故答案為:212、2【解析】有題設得到,利用基本不等式求得最小值.【詳解】由題知,,則,,則,當且僅當時等號成立,故答案為:213、①.##②.##0.96【解析】利用平方關系求出,再利用商數(shù)關系及二倍角的正弦公式計算作答.【詳解】因,且是第三象限角,則,所以,.故答案為:;14、【解析】設所需的年數(shù)為,由已知條件可得,解該不等式即可得結論.【詳解】設所需的年數(shù)為,由已知條件可得,則.因此,至少需要年.故答案為:.15、2【解析】由冪函數(shù)的定義可得m2-m-1=1,得出m=2或m=-1,代入驗證即可.【詳解】是冪函數(shù),根據(jù)冪函數(shù)的定義和性質,得m2-m-1=1解得m=2或m=-1,當m=2時,f(x)=x-3在(0,+∞)上是減函數(shù),符合題意;當m=-1時,f(x)=x0=1在(0,+∞)上不是減函數(shù),所以m=2故答案為:2【點睛】本題考查了冪函數(shù)的定義,考查了理解辨析能力和計算能力,屬于基礎題目.16、【解析】把不等式變形為,分和情況討論,數(shù)形結合求出答案.【詳解】解:變形為:,即在上恒成立令,若,此時在上單調遞減,,而當時,,顯然不合題意;當時,畫出兩個函數(shù)的圖象,要想滿足在上恒成立,只需,即,解得:綜上:實數(shù)a的取值范圍是.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)750元;(2)元.【解析】(1)根據(jù)題目提供的函數(shù)關系式分別算出該商品上市第20天的銷售價格和日銷售量即可;(2)設日銷售金額為元,則,分別討論當時以及當時的情況即可【詳解】解:(1)該商品上市第天的銷售價格是元,日銷售量為件.所以該商品上市第天的日銷售金額是元.(2)設日銷售金額為(元),則.當,時,取得最大值為(元),當,時,取得最大值為(元).所以第天時,這個商品的日銷售金額最大,最大值為(元).18、(1)(2)【解析】(1)根據(jù)交集的定義,列出關于的不等式組即可求解;(2)由題意,,根據(jù)集合的包含關系列出關于的不等式組即可求解;【小問1詳解】解:∵或,且,∴,解得,∴a的取值范圍為;【小問2詳解】解:∵或,且,∴,∴或,即或,∴a的取值范圍是.19、(1)的單調遞增區(qū)間是,單調遞減區(qū)間是(2)(3)【解析】(1)利用去掉絕對值及一次函數(shù)的性質即可求解;(2)根據(jù)(1)的結論,利用單調性與最值的關系即可求解;(3)根據(jù)已知條件將問題轉化為,再利用函數(shù)的單調性與最值的關系,分情況討論即可求解.【小問1詳解】由,得,所以函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是,【小問2詳解】由(1)知,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是,當,即時,當時,函數(shù)取得最小值為,當,即時,當時,函數(shù)取得最小值為,綜上所述,函數(shù)在區(qū)間上的最小值為.【小問3詳解】因為對任意,均存在,使得成立等價于,,.而當時,,故必有由第(2)小題可知,,且,所以,①當時,∴,可得,②當時,∴,可得,③當時,∴或,可得,綜上所述,實數(shù)的取值范圍為20、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時,恒成立,轉化為,在上恒成立求解.【小問1詳解】解:當時,由,解得或,∴函數(shù)的零點為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關于原點對稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當時,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調遞增∴,∴,故m的最大值為3.21、(1)證明見解析(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030物聯(lián)網應用市場供需發(fā)展現(xiàn)狀分析及投資優(yōu)化規(guī)劃
- 2025-2030物流運輸行業(yè)智慧化轉型趨勢分析報告
- 2025-2030物業(yè)管理行業(yè)市場格局分析及未來物業(yè)服務模式研究探討報告
- 企業(yè)采購管理流程及制度手冊
- 施工現(xiàn)場安全管理規(guī)范與制度
- 精準預防醫(yī)學的技術創(chuàng)新與應用
- 精準神經調控:基因治療與腦機接口融合
- 精準醫(yī)療的醫(yī)保支付策略:國際經驗與本地探索
- 精準醫(yī)療理念下的個體化預防策略
- 精準醫(yī)療數(shù)據(jù)共享:安全與倫理的協(xié)同
- 2025體彩知識考試題及答案
- 狼和鴨子兒童故事課件
- 駁回再審裁定書申請抗訴范文
- 2025北京高三二模語文匯編:微寫作
- DB6301∕T 4-2023 住宅物業(yè)星級服務規(guī)范
- 護理查房與病例討論區(qū)別
- 土建資料管理課件
- 公司安全大講堂活動方案
- GB/T 42186-2022醫(yī)學檢驗生物樣本冷鏈物流運作規(guī)范
- T/CA 105-2019手機殼套通用規(guī)范
- 重癥胰腺炎的中醫(yī)護理
評論
0/150
提交評論