2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆湖南省安鄉(xiāng)縣一中數(shù)學(xué)高二上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.2.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.3.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.4.對于實數(shù)a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則5.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.6.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.7.已知變量x,y具有線性相關(guān)關(guān)系,它們之間的一組數(shù)據(jù)如下表所示,若y關(guān)于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.38.拋物線y=4x2的焦點坐標(biāo)是()A.(0,1) B.(1,0)C. D.9.如圖是一個程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.510.已知是數(shù)列的前項和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列11.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.12.函數(shù)的遞增區(qū)間是()A. B.和C. D.和二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,滿足,則________14.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為________15.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為___________海里.16.過點且與直線平行的直線的方程是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經(jīng)過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.18.(12分)某城市一入城交通路段限速60公里/小時,現(xiàn)對某時段通過該交通路段的n輛小汽車車速進行統(tǒng)計,并繪制成頻率分布直方圖(如圖).若這n輛小汽車中,速度在50~60公里小時之間的車輛有200輛.(1)求n的值;(2)估計這n輛小汽車車速的中位數(shù);(3)根據(jù)交通法規(guī)定,小車超速在規(guī)定時速10%以內(nèi)(含10%)不罰款,超過時速規(guī)定10%以上,需要罰款.試根據(jù)頻率分布直方圖,以頻率作為概率的估計值,估計某輛小汽車在該時段通過該路段時被罰款的概率.19.(12分)如圖,在三棱柱中,,D為BC的中點,平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請說明理由20.(12分)已知橢圓的離心率為,以坐標(biāo)原點為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點F的直線交橢圓M于A,B兩點,過F且垂直于直線的直線交橢圓M于C,D兩點,則是否存在實數(shù)使成立?若存在,求出的值;若不存在,請說明理由21.(12分)已知橢圓的離心率為,且其左頂點到右焦點的距離為.(1)求橢圓的方程;(2)設(shè)點、在橢圓上,以線段為直徑的圓過原點,試問是否存在定點,使得到直線的距離為定值?若存在,請求出點坐標(biāo);若不存在,請說理由.22.(10分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D2、A【解析】以為坐標(biāo)原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標(biāo)原點,分別以的方向為軸的正方向,建立空間直角坐標(biāo)系.因為,所以,所以,則點到直線的距離故選:A3、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當(dāng)且僅當(dāng),時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.4、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯誤;若,令c=0,則,故B錯誤;若,令a=-1,b=-2,,,故C錯誤;∵,故,根據(jù)不等式運算規(guī)則,在不等式的兩邊同時乘以或除以一個正數(shù),不等式的方向不變,故D正確.故選:D.5、D【解析】設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.6、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關(guān)鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計算能力,屬于基礎(chǔ)題7、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A8、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點坐標(biāo)得選項.【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標(biāo)為(0,).故選:C9、B【解析】程序框圖中的循環(huán)結(jié)構(gòu),一般需重復(fù)計算,根據(jù)判斷框中的條件,確定何時終止循環(huán),輸出結(jié)果.【詳解】初始值:,當(dāng)時,,進入循環(huán);當(dāng)時,,進入循環(huán);當(dāng)時,,終止循環(huán),輸出的值為3.故選:B10、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因為,所以所以當(dāng)時,時,所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點睛】要注意由求要分兩步:1.時,2.時.11、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.12、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當(dāng)時,可得,當(dāng)時,可得,當(dāng)時,可得,故答案為:15.14、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.15、【解析】利用正弦定理求得甲驅(qū)逐艦與乙護衛(wèi)艦的距離.【詳解】,設(shè)甲乙距離,由正弦定理得.故答案為:16、【解析】設(shè)出直線的方程,代入點的坐標(biāo),求出直線的方程.【詳解】設(shè)過點且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設(shè),則當(dāng)時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當(dāng),直線,,,,,所以當(dāng)時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關(guān)鍵是在兩個參數(shù)之間建立等量關(guān)系;③利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍.18、(1)(2)(3)【解析】(1)根據(jù)已知條件,結(jié)合頻率與頻數(shù)的關(guān)系,即可求解(2)根據(jù)已知條件,結(jié)合中位數(shù)公式,即可求解(3)在這500輛小車中,有40輛超速,再結(jié)合古典概型的概率公式,即可求解【小問1詳解】解:由直方圖可知,速度在公里小時之間的頻率為,所以,解得【小問2詳解】解:設(shè)這輛小汽車車速的中位數(shù)為,則,解得小問3詳解】解:由交通法則可知,小車速度在66公里小時以上需要罰款,由直方圖可知,小車速度在之間有輛,由統(tǒng)計的有關(guān)知識,可以認為車速在公里小時之間的小車有輛,小車速度在之間有輛,故估計某輛小汽車在該時段通過該路段時被罰放的概率為19、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標(biāo)系,利用空間向量進行求解.【小問1詳解】∵,且D為BC的中點,∴,因為平面平面ABC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因為面,所以.【小問2詳解】假設(shè)存在點E,滿足題設(shè)要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點,DC,DA,分別為x,y,z軸的空間直角坐標(biāo)系則,,,,設(shè),,設(shè)面AED的一個法向量為,則,令,則設(shè)面AEC的一個法向量為,則,令,則設(shè)平面EAD與平面EAC的夾角為,則解得:,故點E為中點,所以20、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問2詳解】據(jù)(1)求解知,點F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時若,則綜上,存在實數(shù),且使21、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點到直線的距離公式可求得結(jié)果【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論