版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆河南省開封市蘭考縣等五縣聯(lián)考高二數(shù)學第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.2.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.3.已知數(shù)列{}滿足,且,若,則=()A.-8 B.-11C.8 D.114.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則5.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.6.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.7.復數(shù)的虛部為()A. B.C. D.8.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.9.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-110.已知,則()A. B.C. D.11.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除12.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設等差數(shù)列的前項和為,且,,則__________.14.沈陽市某高中有高一學生600人,高二學生500人,高三學生550人,現(xiàn)對學生關于消防安全知識了解情況進行分層抽樣調(diào)查,若抽取了一個容量為n的樣本,其中高三學生有11人,則n的值等于________.15.在1和9之間插入三個數(shù),使這五個數(shù)成等比數(shù)列,則中間三個數(shù)的積等于________.16.某校有高一學生人,高二學生人.為了解學生的學習情況,用分層抽樣的方法從該校高一高二學生中抽取一個容量為的樣本,已知從高一學生中抽取人,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.18.(12分)在數(shù)列中,,且成等比數(shù)列(1)證明數(shù)列是等差數(shù)列,并求的通項公式;(2)設數(shù)列滿足,其前項和為,證明:19.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點.(1)求證:平面;(2)求證:平面平面;(3)設點是平面上任意一點,直接寫出線段長度最小值.(不需證明)20.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.21.(12分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點.(1)求圓C的標準方程.(2)設直線與圓C交于A,B(異于坐標原點O)兩點,若以AB為直徑的圓過原點,試問直線l是否過定點?若是,求出定點坐標;若否,請說明理由.22.(10分)在中,內(nèi)角所對的邊長分別為,是1和的等差中項(1)求角;(2)若的平分線交于點,且,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C2、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D3、C【解析】利用遞推關系,結(jié)合取值,求得即可.【詳解】因為,且,,故可得,解得(舍),;同理求得,,.故選:C.4、B【解析】函數(shù),,,,,利用導數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設函數(shù)的值域為,函數(shù),的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設函數(shù)的值域為,函數(shù),的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結(jié)合圖象可知,因此D不正確故選:B5、C【解析】求得直線普通方程以及圓的直角坐標方程,利用弦長公式即可求得結(jié)果.【詳解】因為直線的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.6、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負【詳解】∵,∴和異號,又數(shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關鍵點睛:本題求滿足的最大正整數(shù)的值,關鍵就是求出,時成立的的值,解題時應充分利用等差數(shù)列下標和的性質(zhì)求解,屬于中檔題.7、D【解析】直接根據(jù).復數(shù)的乘法運算結(jié)合復數(shù)虛部的定義即可得出答案【詳解】解:,所以復數(shù)的虛部為.故選:D.8、B【解析】模擬程序運行后,可得到輸出結(jié)果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結(jié)構,1),判斷為否,進入循環(huán)結(jié)構,2),判斷為否,進入循環(huán)結(jié)構,3),判斷為否,進入循環(huán)結(jié)構,……9),判斷為否,進入循環(huán)結(jié)構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結(jié)果時,常模擬程序運行以得到結(jié)論.9、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時不存在,∴和斜率相等,則或,∵m=-2時,和重合,故m=1.另解:,故m=1.故選:B.10、B【解析】根據(jù)基本初等函數(shù)的導數(shù)公式及求導法則求導函數(shù)即可.【詳解】.故選:B.11、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法12、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù),利用等差數(shù)列前項和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項和為,且,,,解得,,,解得,故答案為:1014、33【解析】根據(jù)分層抽樣的性質(zhì)進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學生有11人,所以有,故答案為:3315、27【解析】設公比為,利用已知條件求出,然后根據(jù)通項公式可求得答案【詳解】設公比為,插入的三個數(shù)分別為,因為,所以,得,所以,故答案為:2716、【解析】根據(jù)分層抽樣的等比例性質(zhì)列方程,即可樣本容量n.【詳解】由分層抽樣的性質(zhì)知:,可得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】建立空間直角坐標系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)證明見解析;;(2)證明見解析【解析】(1)利用已知條件推出數(shù)列是等差數(shù)列,其公差為,首項為1,求出通項公式,結(jié)合由,,成等比數(shù)列,轉(zhuǎn)化求解即可.(2)化簡通項公式,利用裂項消項法,求解數(shù)列的和即可【詳解】證明:(1)由,得,即,所以數(shù)列是等差數(shù)列,其公差為,首項為1,因此,,,由成等比數(shù)列,得,即,解得或(舍去),故(2)因為,所以因為,所以【點睛】方法點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.19、(1)證明見解析(2)證明見解析(3)【解析】(1)設,連結(jié),根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結(jié)果;(2)由菱形的性質(zhì)可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(3)根據(jù)等體積法,即,經(jīng)過計算直接寫出結(jié)果即可.【小問1詳解】證明:設,連結(jié).因為底面為菱形,所以為的中點,又因為E是PC的中點,所以.又因為平面,平面,所以平面.【小問2詳解】證明:因為底面為菱形,所以.因為底面,所以.又因為,所以平面.又因為平面,所以平面平面.【小問3詳解】解:線段長度的最小值為.20、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標原點,分別為軸的空間直角坐標系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標原點,分別為軸的空間直角坐標系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標,,設平面的法向量則,令,則,即,設平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.21、(1)(2)過定點,定點為【解析】(1)設出圓C的標準方程,由題意列出方程從而可得答案.(2)設,,將直線的方程與圓C的方程聯(lián)立,得出韋達定理,由條件可得,從而得出答案.【小問1詳解】設圓C的標準方程為由題意可得解得,,.故圓C的標準方程為.【小問2詳解】設,.聯(lián)立整理的,則,,故.因為以AB為直徑的圓過原點,所以,即則,化簡得.當時,直線,直線l過原點,此時不滿足以AB為直徑的圓過原點.所以,則,則直線過定點.22、(1);(2)【解析】(1)根據(jù)是1和的等差中項得到,再利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加油站安全管理三級教育考試試題含答案
- 球罐檢罐施工方案
- 2025年特殊作業(yè)試題卷及答案
- (2025年)醫(yī)療器械監(jiān)督管理條例培訓試題及答案
- 2025年消防情景模擬題目及答案
- 施工總體交通導行方案
- 2026年組織部個人年度工作總結(jié)
- 患者誤吸時的應急預案課件
- 2025年電工技師配電箱線路絕緣電阻檢測方法實戰(zhàn)訓練試卷及答案
- 建設工程施工合同糾紛要素式起訴狀模板格式有效規(guī)范
- 信訪工作系列知識培訓課件
- 壓力變送器拆校課件
- 2025年高考真題分類匯編必修二 《經(jīng)濟與社會》(全國)(原卷版)
- 支撐粱施工方案
- 2026屆高考英語二輪復習:2025浙江1月卷讀后續(xù)寫 課件
- 2.3.2 中國第一大河-長江 課件 湘教版地理八年級上冊
- 2025貴州省某大型國有企業(yè)招聘光伏、風電項目工作人員筆試備考題庫及答案解析
- 導致老年人跌倒的用藥風險研究
- GB 21256-2025粗鋼生產(chǎn)主要工序單位產(chǎn)品能源消耗限額
- 經(jīng)顱磁刺激在神經(jīng)疾病治療中的應用
- 裝修工人出意外合同范本
評論
0/150
提交評論