版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l與圓交于A,B兩點,點滿足,若AB的中點為M,則的最大值為()A. B.C. D.2.若數(shù)列是等差數(shù)列,其前n項和為,若,且,則等于()A. B.C. D.3.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”4.拋物線焦點坐標(biāo)為()A. B.C. D.5.已知是等差數(shù)列的前項和,,,則的最小值為()A. B.C. D.6.在數(shù)列中,,,,則()A.2 B.C. D.17.直線被橢圓截得的弦長是A. B.C. D.8.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機(jī)調(diào)查了名學(xué)生,其中到過中共一大會址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項調(diào)查,估計該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.9.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)10.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.11.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.12.把點隨機(jī)投入長為,寬為的矩形內(nèi),則點與矩形四邊的距離均不小于的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義域上的單調(diào)遞增函數(shù),是的導(dǎo)數(shù)且為定義域上的單調(diào)遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________14.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標(biāo)是_____________15.?dāng)?shù)列的前項和為,則_________________.16.已知長軸長為,短軸長為的橢圓的面積為.現(xiàn)用隨機(jī)模擬的方法來估計的近似值,先用計算機(jī)產(chǎn)生個數(shù)對,,其中,均為內(nèi)的隨機(jī)數(shù),再由計算機(jī)統(tǒng)計發(fā)現(xiàn)其中滿足條件的數(shù)對有個,由此可估計的近似值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)兩個頂點、的坐標(biāo)分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.18.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.19.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長線上一點,且AD⊥AC,求線段BD的長20.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項;(Ⅱ)求數(shù)列的前n項和Sn.21.(12分)已知點及圓,點P是圓B上任意一點,線段的垂直平分線l交半徑于點T,當(dāng)點P在圓上運動時,記點T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點C、D、M、N,且四邊形是菱形,求該菱形周長的最大值22.(10分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè),,則、,由點在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點,則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點睛】關(guān)鍵點點睛:由點圓位置、中點坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.2、B【解析】由等差數(shù)列的通項公式和前項和公式求出的首項和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.3、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.4、C【解析】由拋物線方程確定焦點位置,確定焦參數(shù),得焦點坐標(biāo)【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標(biāo)為故選:C5、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.6、A【解析】根據(jù)題中條件,逐項計算,即可得出結(jié)果.【詳解】因為,,,所以,因此.故選:A.7、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題8、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.9、C【解析】求出函數(shù)的導(dǎo)函數(shù),通過在某點處的導(dǎo)數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當(dāng)時,存在使,且當(dāng)時,;當(dāng)時,,即有極小值,無極大值,故B錯誤;設(shè)為的極值點,則,且,所以,,當(dāng)時,;當(dāng)時,,故C正確,D錯誤.10、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.11、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因為,所以8a2=9b2,所以故選:D.12、A【解析】確定矩形四邊的距離均不小于的點構(gòu)成的區(qū)域,由幾何概型面積型的公式計算可得結(jié)果.【詳解】若點與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內(nèi),所求概率.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】由題意可得0,結(jié)合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調(diào)增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).14、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標(biāo)【詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點坐標(biāo)為故答案為:15、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當(dāng)時,;而不適合上式,.故答案:.16、【解析】由,,根據(jù)表示的數(shù)對對應(yīng)的點在橢圓的內(nèi)部,且在第一象限,求出滿足條件的點的概率,再轉(zhuǎn)化為幾何概型的面積類型求解【詳解】,,表示的數(shù)對對應(yīng)的點在橢圓的內(nèi)部,且在第一象限,其面積為,故,得故答案為:.【點睛】本題主要考查了幾何型概率應(yīng)用,解題關(guān)鍵是掌握幾何型概率求法,考查了分析能力和計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)先表示出邊、所在直線的斜率,然后根據(jù)兩條直線的斜率關(guān)系建立方程即可;(2)聯(lián)立直線與橢圓方程,利用韋達(dá)定理和中點坐標(biāo)公式即可求出直線的斜率;(3)先表示出,然后利用橢圓的性質(zhì),進(jìn)而確定的最大值.【小問1詳解】設(shè)點,則由可得:化簡得:故頂點的軌跡的方程:【小問2詳解】當(dāng)直線的斜率不存在時,顯然不符合題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為聯(lián)立方程組消去可得:設(shè)直線與軌跡的交點,的坐標(biāo)分別為由韋達(dá)定理得:點為、兩點的中點,可得:,即則有:解得:故求直線的方程為:【小問3詳解】由(1)可知,設(shè)則有:又點滿足,即由橢圓的性質(zhì)得:所以當(dāng)時,18、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結(jié)果.(2)應(yīng)用對立事件、獨立事件的概率求法,結(jié)合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.19、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,20、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項和公式等基本知識(Ⅰ)由題設(shè)知公差由成等比數(shù)列得解得(舍去),故的通項(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項和公式得點評:本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決21、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運用韋達(dá)定理和判別式大于0,以及弦長公式,求得,,運用菱形和橢圓的對稱性可得,關(guān)于原點對稱,結(jié)合菱形的對角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長為,運用基本不等式,計算可得所求最大值【小問1詳解】點在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點為中心,和為焦點,長軸長為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡可得,①,,,同理可得,因為四邊形為菱形,所以,所以,又因為,所以,所以,關(guān)于原點對稱,又橢圓關(guān)于原點對稱,所以,關(guān)于原點對稱,,也關(guān)于原點對稱,所以且,所以,,,,因為四邊形為菱形,可得,即,即,即,可得,化簡可得,設(shè)菱形的周長為,則,當(dāng)且僅當(dāng),即時等號成立,此時,滿足①,所以菱形的周長的最大值為【點睛】關(guān)鍵點點睛:在處理此類直線與橢圓相交問題中,一般先設(shè)出直線方程,聯(lián)立方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防培訓(xùn)班一日制度
- 專科培訓(xùn)準(zhǔn)入制度
- 幼兒教室崗前培訓(xùn)制度
- 餐飲人員集中培訓(xùn)制度
- 應(yīng)急培訓(xùn)與演練管理制度
- 高效培訓(xùn)制度
- 計生藥具宣傳培訓(xùn)制度
- 高校后勤服務(wù)培訓(xùn)制度
- 家長健康培訓(xùn)制度
- 教師專業(yè)成長培訓(xùn)制度
- 復(fù)方蒲公英注射液在銀屑病中的應(yīng)用研究
- 住培中醫(yī)病例討論-面癱
- 設(shè)備安裝施工方案范本
- 衛(wèi)生院副院長先進(jìn)事跡材料
- 復(fù)發(fā)性抑郁癥個案查房課件
- 網(wǎng)絡(luò)直播創(chuàng)業(yè)計劃書
- 人類學(xué)概論(第四版)課件 第1、2章 人類學(xué)要義第一節(jié)何為人類學(xué)、人類學(xué)的理論發(fā)展過程
- 《功能性食品學(xué)》第七章-輔助改善記憶的功能性食品
- 幕墻工程竣工驗收報告2-2
- 1、工程竣工決算財務(wù)審計服務(wù)項目投標(biāo)技術(shù)方案
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
評論
0/150
提交評論