廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題含解析_第1頁
廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題含解析_第2頁
廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題含解析_第3頁
廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題含解析_第4頁
廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西桂林市、防城港市2026屆高二上數(shù)學期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù),滿足且,則()A.1 B.2C.3 D.42.某城市2017年的空氣質量狀況如下表所示:污染指數(shù)3060100110130140概率其中污染指數(shù)時,空氣質量為優(yōu);時,空氣質量為良;時,空氣質量為輕微污染,該城市2017年空氣質量達到良或優(yōu)的概率為()A. B.C. D.3.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.4.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.5.函數(shù),則曲線在點處的切線方程為()A. B.C. D.6.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或27.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.如圖,是函數(shù)的部分圖象,且關于直線對稱,則()A. B.C. D.9.已知集合,則()A. B.C. D.10.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.411.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.12.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.24二、填空題:本題共4小題,每小題5分,共20分。13.過點,的直線方程(一般式)為___________.14.如圖所示,直線是曲線在點處的切線,則__________.15.小明同學發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.16.已知數(shù)列前n項和為,且.(1)證明:是等比數(shù)列,并求的通項公式;(2)在①;②;③這三個條件中任選一個補充在下面橫線上,并加以解答.已知數(shù)列滿足___________,求的前n項和.注:如果選擇多個方案分別解答,按第一個方案解答計分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若在單調遞增,求的取值范圍;(2)若,求證:.18.(12分)求下列不等式的解集:(1);(2)19.(12分)已知數(shù)列滿足,(1)設,求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和20.(12分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標準方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標21.(12分)如圖,正方體的棱長為,分別是的中點,點在棱上,().(Ⅰ)三棱錐的體積分別為,當為何值時,最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.22.(10分)已知命題:方程有實數(shù)解,命題:,.(1)若是真命題,求實數(shù)的取值范圍;(2)若為假命題,且為真命題,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先取,得與之間的關系,然后根據(jù)導數(shù)的運算直接求導,代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C2、A【解析】根據(jù)互斥事件的和的概率公式求解即可.【詳解】由表知空氣質量為優(yōu)的概率是,由互斥事件的和的概率公式知,空氣質量為良的概率為,所以該城市2017年空氣質量達到良或優(yōu)的概率,故選:A【點睛】本題主要考查了互斥事件,互斥事件和的概率公式,屬于中檔題.3、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質,三角形的重心的向量表示,屬于中檔題.4、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D5、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D6、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B7、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A8、C【解析】先根據(jù)條件確定為函數(shù)的極大值點,得到的值,再根據(jù)圖像的單調性和導數(shù)幾何意義得到和的正負即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點,所以,又因為函數(shù)在單調遞增,由圖像可知處切線斜率為銳角,根據(jù)導數(shù)的幾何意義,所以,又因為函數(shù)在單調遞增,由圖像可知處切線斜率為鈍角,根據(jù)導數(shù)的幾何意義所以.即.故選:C.9、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.10、A【解析】由橢圓的定義得,進而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A11、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關鍵點點睛:本題考查利用圓周角求參數(shù),解題的關鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).12、D【解析】根據(jù)給定條件結合橢圓定義求出,再判斷形狀計算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩點式方程可求直線方程.【詳解】∵直線過點,,∴,∴,化簡得.故答案為:.14、##【解析】利用直線所過點求得直線的斜率,從而求得.【詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:15、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:16、(1)證明見解析,;(2)答案見解析.【解析】(1)利用得出的遞推關系,變形后可證明是等比數(shù)列,由等比數(shù)列通項公式得,然后再除以得到新數(shù)列是等差數(shù)列,從而可求得;(2)選①,直接求出,用錯位相減法求和;選②,求出,用分組(并項)求和法求和;選③,求出,用裂項相消法求和【詳解】解:(1)當時,因為,所以,兩式相減得,.所以.當時,因為,所以,又,故,于是,所以是以4為首項2為公比的等比數(shù)列.所以,兩邊除以得,.又,所以是以2為首項1為公差的等差數(shù)列.所以,即.(2)若選①:,即.因為,所以.兩式相減得,所以.若選②:,即.所以.若選③:,即.所以.【點睛】本題考查求等差數(shù)列、等比數(shù)列的通項公式,錯位相減法求和.數(shù)列求和的常用方法:設數(shù)列是等差數(shù)列,是等比數(shù)列,(1)公式法:等差數(shù)列或等比數(shù)列的求和直接應用公式求和;(2)錯位相減法:數(shù)列的前項和應用錯位相減法;(3)裂項相消法;數(shù)列(為常數(shù),)的前項和用裂項相消法;(4)分組(并項)求和法:數(shù)列用分組求和法,如果數(shù)列中的項出現(xiàn)正負相間等特征時可能用并項求和法;(5)倒序相加法:滿足(為常數(shù))的數(shù)列,需用倒序相加法求和三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調遞增,則在上恒成立,由求解.(2)由(1)的結論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時,,在上單調遞增,所以,所以有,即,因此.(2)由(1)可知當時,為增函數(shù),不妨取,則有在上單調遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點睛】方法點睛:(1)利用導數(shù)研究函數(shù)的單調性的關鍵在于準確判定導數(shù)的符號,當f(x)含參數(shù)時,需依據(jù)參數(shù)取值對不等式解集的影響進行分類討論.(2)若可導函數(shù)f(x)在指定的區(qū)間D上單調遞增(減),求參數(shù)范圍問題,可轉化為f′(x)≥0(或f′(x)≤0)恒成立問題,從而構建不等式,要注意“=”是否可以取到18、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問1詳解】解:因為,所以,解得,所以不等式的解集是;【小問2詳解】因為,所以,所以,即,解得,所以不等式的解集是.19、(1)證明見解析;(2).【解析】(1)將變形為,得到為等比數(shù)列,(2)由(1)得到的通項公式,用錯位相減法求得【詳解】(1)由,,可得,因為則,,可得是首項為,公比為的等比數(shù)列,(2)由(1),由,可得,,,上面兩式相減可得:,則【點睛】數(shù)列求和的方法技巧:(1)倒序相加:用于等差數(shù)列、與二項式系數(shù)、對稱性相關聯(lián)的數(shù)列的求和(2)錯位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個等差或等比數(shù)列和或差數(shù)列的求和(4)裂項相消法:用于通項能變成兩個式子相減,求和時能前后相消的數(shù)列求和.20、(1);(2)見解析,定點【解析】(1)先判斷圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2)設在軸上存在定點,使得為定值,根據(jù)題意,設直線的方程為,聯(lián)立可得,再運算將韋達定理代入化簡有與k無關即可.【詳解】(1)由圓方程中的時,的兩根不為相反數(shù),故可設圓經(jīng)過橢圓的上、下頂點和右頂點,令圓方程中的,得,即有又,解得∴橢圓的標準方程為(2)證明:設在軸上存在定點,使得為定值,由(1)可得,設直線的方程為,聯(lián)立可得,設,則,,要使為定值,只需,解得∴在軸上存在定點,使得為定值,定點的坐標為【點睛】本題主要考查橢圓的幾何性質和直線與橢圓的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.21、(Ⅰ),.(Ⅱ)見解析.【解析】(Ⅰ)由題可知,,由和,結合基本不等式可求最值;(Ⅱ)連接交于點,則為的中點,可得為中點,易證得,得平面,所以,進而可證得,,所以平面EFM,因為平面,從而得證.【詳解】(Ⅰ)由題可知,,.所以(當且僅當,即時等號成立)所以當時,最大,最大值為.(Ⅱ)連接交于點,則為的中點,因為平面,平面平面,所以,所以為中點.連接,因為為中點,所以,因為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論