版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省株洲市醴陵市第二中學(xué)2026屆高一上數(shù)學(xué)期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的一部分圖像如圖所示,則()A. B.C. D.2.若是第二象限角,是其終邊上的一點,且,則()A. B.C. D.或3.已知,,且,,,那么的最大值為()A. B.C.1 D.24.已知正實數(shù)x,y,z,滿足,則()A. B.C. D.5.函數(shù)的減區(qū)間為()A. B.C. D.6.已知向量,其中,則的最小值為()A.1 B.2C. D.37.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知函數(shù)且,則實數(shù)的取值范圍為()A. B.C. D.9.()A. B.C. D.10.過原點和直線與的交點的直線的方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域是__________.12.設(shè)為銳角,若,則的值為_______.13.已知正四棱錐的底面邊長為4cm,高與斜高的夾角為,則該正四棱錐的側(cè)面積等于________cm214.已知為奇函數(shù),,則____________15.已知函數(shù)的定義域和值域都是集合,其定義如表所示,則____________.x01201216.已知函數(shù),其所有的零點依次記為,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知定理:“若、為常數(shù),滿足,則函數(shù)的圖象關(guān)于點中心對稱”.設(shè)函數(shù),定義域為.(1)試求的圖象對稱中心,并用上述定理證明;(2)對于給定的,設(shè)計構(gòu)造過程:、、、.如果,構(gòu)造過程將繼續(xù)下去;如果,構(gòu)造過程將停止.若對任意,構(gòu)造過程可以無限進行下去,求的取值范圍.18.已知定義在上的函數(shù)為常數(shù)).(1)求的奇偶性;(2)已知在上有且只有一個零點,求實數(shù)a的值.19.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)設(shè),解不等式20.已知函數(shù)fx(1)求fx定義域;(2)判斷函數(shù)fx(3)若fx≤log2mx+5對于21.已知如圖,在直三棱柱中,,且,是的中點,是的中點,點在直線上.(1)若為中點,求證:平面;(2)證明:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由圖可知,,排除選項,由,排除選項,故選.2、C【解析】根據(jù)余弦函數(shù)的定義有,結(jié)合是第二象限角求解即可.【詳解】由題設(shè),,整理得,又是第二象限角,所以.故選:C3、C【解析】根據(jù)題意,由基本不等式的性質(zhì)可得,即可得答案.【詳解】根據(jù)題意,,,,則,當(dāng)且僅當(dāng)時等號成立,即的最大值為1.故選:4、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖像比較大小即可.【詳解】令,則,,,由圖可知.5、D【解析】先氣的函數(shù)的定義域為,結(jié)合二次函數(shù)性質(zhì)和復(fù)合函數(shù)的單調(diào)性的判定方法,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,即,解得,即函數(shù)的定義域為,令,可得其開口向下,對稱軸的方程為,所以函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在上單調(diào)遞減,即的減區(qū)間為.故選:D.6、A【解析】利用向量坐標(biāo)求模得方法,用表示,然后利用三角函數(shù)分析最小值【詳解】因為,所以,因為,所以,故的最小值為.故選A【點睛】本題將三角函數(shù)與向量綜合考察,利用三角函數(shù)得有界性,求模長得最值7、B【解析】根據(jù)指數(shù)函數(shù)的性質(zhì)求的解集,由充分、必要性的定義判斷題設(shè)條件間的關(guān)系即可.【詳解】由,則,所以“”是“”的充分不必要條件.故選:B8、B【解析】易知函數(shù)為奇函數(shù),且在R上為增函數(shù),則可化為,則即可解得a的范圍.【詳解】函數(shù),定義域為,滿足,∴,令,∴,∴為奇函數(shù),,∵函數(shù),在均為增函數(shù),∴在為增函數(shù),∴在為增函數(shù),∵為奇函數(shù),∴在為增函數(shù),∴,解得.故選:B.9、D【解析】根據(jù)誘導(dǎo)公式以及特殊角的三角函數(shù)值,即可容易求得結(jié)果.【詳解】因為.故選:D.10、C【解析】先求出兩直線的交點,從而可得所求的直線方程.【詳解】由可得,故過原點和交點的直線為即,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、{|且}【解析】根據(jù)函數(shù),由求解.【詳解】因為函數(shù),所以,解得,所以函數(shù)的定義域是{|且},故答案為:{|且}12、【解析】由條件求得的值,利用二倍角公式求得和的值,再根據(jù),利用兩角差的正弦公式計算求得結(jié)果【詳解】∵為銳角,,∴,∴,故,故答案為.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的正弦公式、二倍角公式的應(yīng)用,屬于中檔題13、32【解析】在正四棱錐的高和斜高所在的直角三角形中計算出斜高后,根據(jù)三角形的面積公式即可求出側(cè)面積.【詳解】因為正四棱錐的底面邊長為4cm,高與斜高的夾角為,所以斜高為cm,所以該正四棱錐的側(cè)面積等于cm2故答案為:32.【點睛】本題考查了正棱錐的結(jié)構(gòu)特征,考查了求正四棱錐的側(cè)面積,屬于基礎(chǔ)題.14、【解析】根據(jù)奇偶性求函數(shù)值.【詳解】因為奇函數(shù),,所以.故答案為:.15、【解析】根據(jù)表格從里層往外求即可.【詳解】解:由表可知,.故答案為:.16、16【解析】由零點定義,可得關(guān)于的方程.去絕對值分類討論化簡.將對數(shù)式化為指數(shù)式,再去絕對值可得四個方程.結(jié)合韋達定理,求得各自方程兩根的乘積,即可得所有根的積.【詳解】函數(shù)的零點即所以去絕對值可得或即或去絕對值可得或,或當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得綜上可得所有零點的乘積為故答案為:【點睛】本題考查了函數(shù)零點定義,含絕對值方程的解法,分類討論思想的應(yīng)用,由韋達定理研究方程根的關(guān)系,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),證明見解析;(2).【解析】(1)計算出的值,由此可得出結(jié)論;(2)分、、三種情況討論,求出函數(shù)的值域,根據(jù)題意可得出關(guān)于實數(shù)的不等式組,由此可求得實數(shù)的取值范圍.【詳解】(1),由已知定理得,的圖象關(guān)于點成中心對稱;(2),當(dāng)時,若,由基本不等式可得,若,由基本不等式可得.此時,函數(shù)的值域為,當(dāng)時,的值域為,當(dāng)時,的值域為,因為構(gòu)造過程可以無限進行下去,對任意恒成立或,由此得到.因此,實數(shù)的取值范圍是.【點睛】關(guān)鍵點點睛:本題考查函數(shù)的新定義問題,解本題的關(guān)鍵在于對實數(shù)的取值進行分類討論,求出函數(shù)的值域,根據(jù)題意得出所滿足的不等式組求解.18、(1)偶函數(shù),證明見解析,(2)【解析】(1)利用定義判斷函數(shù)的奇偶性;(2)利用該函數(shù)的對稱性,數(shù)形結(jié)合得到實數(shù)a的值.【詳解】(1)函數(shù)的定義域為R,,即,∴為偶函數(shù),(2)y=f(x)的圖象關(guān)于y軸對稱,由題意知f(x)=0只有x=0這一個零點,把(0,0)代入函數(shù)表達式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,當(dāng)a=1時,在上單調(diào)遞增,∴此時顯然符合條件;當(dāng)a=﹣3時,,,即,即在上存在零點,知f(x)至少有三個根,不符合所以,符合條件的實數(shù)a的值為1【點睛】本題主要考查函數(shù)零點的概念,要注意函數(shù)的零點不是點,而是函數(shù)f(x)=0時的x的值,屬于中檔題19、(1);(2)奇函數(shù),理由見解析;(3).【解析】(1)由對數(shù)真數(shù)大于零可構(gòu)造不等式組求得結(jié)果;(2)根據(jù)奇偶性定義判斷即可得到結(jié)論;(3)將函數(shù)化為,由對數(shù)函數(shù)性質(zhì)可知,解不等式求得結(jié)果.【詳解】(1)由題意得:,解得:,定義域為.(2),為定義在上的奇函數(shù).(3)當(dāng)時,,由得:,解得:,的解集為.20、(1)x(2)函數(shù)fx(3)-2【解析】(1)解不等式4-x(2)根據(jù)奇偶性的定義直接判斷即可;(3)根據(jù)題意,將問題轉(zhuǎn)化為4-x2≤mx+5且mx+5>0【小問1詳解】解:由題知4-x2>0所以函數(shù)fx=【小問2詳解】解:函數(shù)為偶函數(shù),證明如下:由(1)知函數(shù)定義域關(guān)于原點對稱,所以f-x所以函數(shù)為偶函數(shù).【小問3詳解】解:因為fx≤log即log24-x所以4-x2≤mx+5且mx+5>0所以m≥-1x-x且m>由于-1x-x=-y=-5x在x∈0,2所以m≥-2且m≥-52,即所以實數(shù)m的取值范圍是-2,+∞,最小值21、(1)見解析;(2)見解析【解析】(1)取中點為,連接,,首先說明四邊形是平行四邊形,即可得,根據(jù)線面平行判定定理即可得結(jié)果;(2)連接,利用得到,再通過平面得到,進而平面,即可得最后結(jié)果.【詳解】(1)證明:取中點為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院醫(yī)保科年度工作總結(jié)
- 退役軍人服務(wù)保障體系標(biāo)準(zhǔn)化建設(shè)
- 求職者面試技巧全套教程
- 一般工貿(mào)行業(yè)新員工三級安全培訓(xùn)考試試題及答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板修改無約束
- 不用熬夜寫!建設(shè)工程施工合同糾紛要素式起訴狀模板現(xiàn)成用
- 保險講師培訓(xùn)
- 環(huán)境友好催化技術(shù)課件
- 調(diào)色年終總結(jié)和配料(3篇)
- 公務(wù)員法執(zhí)行情況自查報告
- 2026年游戲AB測試實施方法含答案
- 2025湖南湘西鶴盛原煙發(fā)展有限責(zé)任公司招聘擬錄用人員筆試歷年備考題庫附帶答案詳解
- 江蘇省2025年普通高中學(xué)業(yè)水平合格性考試英語試卷(含答案)
- 枕骨骨折的護理課件
- TCEC電力行業(yè)數(shù)據(jù)分類分級規(guī)范-2024
- 駱駝的養(yǎng)殖技術(shù)與常見病防治
- GB/T 26951-2025焊縫無損檢測磁粉檢測
- 2025及未來5-10年高壓管匯項目投資價值市場數(shù)據(jù)分析報告
- 腹部手術(shù)圍手術(shù)期疼痛管理指南(2025版)課件
- 2025年衛(wèi)生人才評價考試(臨床醫(yī)學(xué)工程技術(shù)中級)歷年參考題庫含答案
- 呼吸康復(fù)科普脫口秀
評論
0/150
提交評論