陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西西安地區(qū)2026屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.2.下列結論中正確的有()A.若,則 B.若,則C.若,則 D.若,則3.等差數(shù)列中,若,則()A.42 B.45C.48 D.514.已知拋物線上的點到其準線的距離為,則()A. B.C. D.5.在正方體中,,則()A. B.C. D.6.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.17.設等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.268.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知,為正實數(shù),且,則的最小值為()A. B.C. D.110.已知傾斜角為的直線與雙曲線,相交于,兩點,是弦的中點,則雙曲線的漸近線的斜率是()A. B.C. D.11.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為112.方程化簡的結果是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.復數(shù)的共軛復數(shù)是__________14.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________15.已知雙曲線的焦點,過F且斜率為1的直線與雙曲線有且只有一個交點,則雙曲線的方程為_________16.函數(shù)在處的切線方程為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長18.(12分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.19.(12分)已知點是橢圓E:一點,且橢圓的離心率為.(1)求此橢圓E方程;(2)設橢圓的左頂點為A,過點A向上作一射線交橢圓E于點B,以AB為邊作矩形ABCD,使得對邊CD經過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.20.(12分)設函數(shù)(1)求函數(shù)的單調區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:21.(12分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調查,并將調查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)直方圖估算:(1)在該地隨機調查一位在崗居民,該居民收入在區(qū)間內的概率;(2)該地區(qū)在崗居民月收入的平均數(shù)和中位數(shù);22.(10分)已知函數(shù)(1)討論函數(shù)的單調性;(2)若函數(shù)有兩個零點,,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D2、D【解析】根據(jù)基本初等函數(shù)的導數(shù)和運算法則分別計算函數(shù)的導數(shù),即可判斷選項.【詳解】A.若,則,故A錯誤;B.若,則,故B錯誤;C.若,則,故C錯誤;D.若,則,故D正確.故選:D3、C【解析】結合等差數(shù)列的性質求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C4、C【解析】首先根據(jù)拋物線的標準方程的形式,確定的值,再根據(jù)焦半徑公式求解.【詳解】,,因為點到的準線的距離為,所以,得故選:C5、A【解析】根據(jù)空間向量基本定理,結合空間向量加法的幾何意義進行求解即可.【詳解】因為,而,所以有,故選:A6、C【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結合點到直線的距離公式,即可求出結果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.7、A【解析】根據(jù)給定條件利用韋達定理結合等差數(shù)列性質計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A8、D【解析】根據(jù)直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內,故不一定成立,即必要性不成立.故選:D.9、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當且僅當時等號成立,故的最小值為1,故選:D.10、A【解析】依據(jù)點差法即可求得的關系,進而即可得到雙曲線的漸近線的斜率.【詳解】設,則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A11、D【解析】建立空間直角坐標系,進而根據(jù)空間向量的坐標運算判斷A,B,C;對D,算出平面MON的法向量,進而求出向量在該法向量方向上投影的絕對值,即為所求距離.【詳解】如圖建立空間直角坐標系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.12、D【解析】由方程的幾何意義得到是橢圓,進而得到焦點和長軸長求解.【詳解】∵方程,表示平面內到定點、的距離的和是常數(shù)的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結果故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復數(shù)除法化簡,由共軛復數(shù)的概念寫出即可.【詳解】,∴.故答案為:14、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據(jù)可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.15、【解析】根據(jù)直線與雙曲線只有一個交點可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點,且焦點,直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:16、【解析】求得函數(shù)的導數(shù),得到且,結合直線的點斜式方程,即可求解.【詳解】由題意,函數(shù),可得,則且,所以函數(shù)在處的切線方程為,即,即切線方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內部,即可證結論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設,,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為18、(1)動點的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點可得,由此可得,根據(jù)橢圓的定義可得點的軌跡為橢圓,結合橢圓的標準方程求動點的軌跡的方程;(2)由(1)可求點坐標,設直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點且長軸為4的橢圓上則動點的軌跡的方程為:;【小問2詳解】故即.設:,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故19、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關于a,b的方程組,解方程組代入得解.(2)(i)設直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設直線AB的斜率為,則直線AB的方程為:,由消去y并整理得:,點的橫坐標,則點的橫坐標有:,解得,則有,因矩形的邊CD過原點O,則,因此,矩形的面積,當且僅當,即時取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時,直線AB的方程為.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達定理構建目標的函數(shù)關系式,自變量可以斜率或點的橫、縱坐標等.而目標函數(shù)的最值可以通過二次函數(shù)或基本不等式或導數(shù)等求得.20、(1)答案見詳解(2),證明見解析【解析】(1)求導得,,分類討論參數(shù)a的范圍即可判斷單調區(qū)間;(2)設,,聯(lián)立整理得,構造得,構造函數(shù),結合導數(shù)判斷單調性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調遞增;當時,令,得,令,得所以在單調遞減,在單調遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設.設,,則則,即,整理得,所以,設,則,所以在上單調遞減,所以,所以,即.21、(1)(2)平均數(shù)為;中位數(shù)為.【解析】(1)直接根據(jù)概率和為1計算得到答案.(2)根據(jù)平均數(shù)和中位數(shù)的定義直接計算得到答案.【小問1詳解】該居民收入在區(qū)間內的概率為:【小問2詳解】居民月收入的平均數(shù)為:.第一組概率為,第二組概率為,第三組概率為,設居民月收入的中位數(shù)為,則,解得.22、(1)函數(shù)的單調性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導數(shù),按a值分類討論判斷的正負作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構造函數(shù),借助函數(shù)導數(shù)推理作答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論