甘肅肅蘭州五十一中2026屆數學高二上期末調研試題含解析_第1頁
甘肅肅蘭州五十一中2026屆數學高二上期末調研試題含解析_第2頁
甘肅肅蘭州五十一中2026屆數學高二上期末調研試題含解析_第3頁
甘肅肅蘭州五十一中2026屆數學高二上期末調研試題含解析_第4頁
甘肅肅蘭州五十一中2026屆數學高二上期末調研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅肅蘭州五十一中2026屆數學高二上期末調研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“圓”是中國文化的一個重要精神元素,在中式建筑中有著廣泛的運用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m2.直線在y軸上的截距為()A.-1 B.1C. D.3.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.4.已知在直角坐標系xOy中,點Q(4,0),O為坐標原點,直線l:上存在點P滿足.則實數m的取值范圍是()A. B.C. D.5.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關于整除的問題,現有這樣一個整除問題:將2至2021這2020個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列,則此數列的項數為()A. B.C. D.6.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.7.設函數若函數有兩個零點,則實數m的取值范圍是()A. B.C. D.8.已知A(-1,1,2),B(1,0,-1),設D在直線AB上,且,設C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.9.已知i是虛數單位,復數z=,則復數z的虛部為()A.i B.-iC.1 D.-110.某校開展研學活動時進行勞動技能比賽,通過初選,選出共6名同學進行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當然不是最差的”.試從這個回答中分析這6人的名次排列順序可能出現的結果有()A.720種 B.600種C.480種 D.384種11.連擲一枚均勻的骰子兩次,所得向上的點數分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為12.下面四個說法中,正確說法的個數為()(1)如果兩個平面有三個公共點,那么這兩個平面重合;(2)兩條直線可以確定一個平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內.A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足:,,,則______14.在平面直角坐標系中,直線與的交點為,以為圓心作圓,圓上的點到軸的最小距離為(Ⅰ)求圓的標準方程;(Ⅱ)過點作圓的切線,求切線的方程15.設拋物線C:的焦點為F,準線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.16.已知函數.(1)若的解集為,求a,b的值;(2)若,a,b均正實數,求的最小值;(3)若,當時,若不等式恒成立,求實數b的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,(1)求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數的取值范圍18.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.19.(12分)設Sn是等差數列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數列{bn}的前n項和Tn.20.(12分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.21.(12分)設橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數,使得?若存在,求值;若不存在,說明理由.22.(10分)已知函數,曲線在處的切線方程為.(Ⅰ)求實數,的值;(Ⅱ)求在區(qū)間上的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設半徑為R,根據垂徑定理可以列方程求解即可.【詳解】設半徑為R,,解得,化簡得.故選:B.2、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A3、A【解析】根據橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A4、A【解析】根據給定直線設出點P的坐標,再借助列出關于的不等式,然后由不等式有解即可計算作答.【詳解】因點P在直線l:上,則設,于是有,而,因此,,即,依題意,上述關于的一元二次不等式有實數解,從而有,解得,所以實數m的取值范圍是.故選:A5、C【解析】由題設且,應用不等式求的范圍,即可確定項數.【詳解】由題設,且,所以,可得且.所以此數列的項數為.故選:C6、A【解析】根據給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A7、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數分析函數的單調性與最值,畫出函數圖象,數形結合可得結果.【詳解】解:設,則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數有兩個零點,實數m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數的性質、利用導數研究函數的單調性、函數的零點,以及數形結合思想的應用,屬于難題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,函數圖象是函數的一種表達形式,它形象地揭示了函數的性質,為研究函數的數量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數;2、求參數的取值范圍;3、求不等式的解集;4、研究函數性質8、B【解析】設D(x,y,z),根據求出D(,,0),再根據CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點睛】(1)本題主要考查向量的線性運算和空間向量垂直的坐標表示,意在考查學生對這些知識的掌握水平和分析推理能力.(2).9、C【解析】先通過復數的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.10、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個元素在4個位置全排列,根據分步計數原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計數原理知有種情況故選:D.11、D【解析】計算出事件“t=12”的概率可判斷A;根據對立事件的概念,可判斷B;根據互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D12、A【解析】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個平面即可判斷;利用平面的基本性質中的公理判斷即可;若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(如棱錐的3條側棱),即可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個平面,故(2)不正確;利用平面的基本性質中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(如棱錐的3條側棱),故(4)不正確,綜上所述只有一個說法是正確的,故選:A【點睛】本題主要考查了空間中點,線,面的位置關系.屬于較易題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】運用累和法,結合等差數列前項和公式進行求解即可.【詳解】因為,,所以當時,有,因此有:,即,當時,適合上式,所以,故答案為:.14、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點的坐標,設圓的半徑為,圓上的點到軸的最小距離為1求得的值,由此可得出圓的標準方程;(Ⅱ)對切線的斜率是否存在進行分類討論,當切線的斜率不存在時,可得切線方程為,驗證即可;當切線的斜率存在時,可設所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯立方程組,解得,即點設圓的半徑為,由于圓上的點到軸的最小距離為,則,所以,故圓的標準方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設切線的方程為,即,圓的圓心坐標為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點睛】本題考查圓的標準方程的求解,同時也考查了過圓外一點的圓的切線方程的求解,考查計算能力,屬于中等題.15、【解析】根據拋物線的性質及拋物線方程可求坐標,進而得解.【詳解】由拋物線的方程可得焦點,準線,由題意可得,設,有拋物線的性質可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.16、(1),;(2);(3)【解析】(1)根據韋達定理解求得答案;(2)根據題意,,進而化簡,然后結合基本不等式解得答案;(3)討論,和x=2三種情況,進而分參轉化為求函數的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達定理得,,故,.【小問2詳解】由題意得,,所以,當且僅當時取等號.【小問3詳解】若,,不等式恒成立.當時,,此時,即對于恒成立,單調遞減,此時,,所以;當時,,此時,即即對于恒成立,在單調遞減,此時,所以;當x=2時,.綜上所述:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出函數的導數,計算,,求出切線方程即可;(2)問題轉化為,利用導函數求出的最大值,求出的范圍即可.【小問1詳解】因為,所以,則切線的斜率為,又因為,則切點為,所以曲線在點處的切線方程為,即【小問2詳解】當時,令得,列表得x001↘極小值↗所以當時,的最大值為由題意知,故,解之得,所以實數的取值范圍為.18、(1);(2)或.【解析】(1)由題設可得圓心為,半徑,根據直線與圓的相切關系,結合點線距離公式列方程求參數a的值即可.(2)根據圓中弦長、半徑與弦心距的幾何關系列方程求參數a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,即,解得:,所以,整理得:,解得:或,則直線為或.19、(1);(2)【解析】(1)根據所給條件列出方程組,求得,即可求得答案;(2)根據(1)的結果,寫出,利用等比數列的前n項和公式求得答案.【小問1詳解】設等差數列{an}公差為d,由,得解得所以(n∈N*);【小問2詳解】由(1)可知,故,所以20、(1)(2)不一定共線,理由見解析【解析】(1)由橢圓定義可得a,利用∽△BOA可解;(2)考察軸時的情況,分析可知M,,N不一定共線.【小問1詳解】由題意得,,設,,代入橢圓C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以橢圓C的方程為.【小問2詳解】當軸時,,設,,則由已知條件和方程,可得,整理得,,解得或.由于,所以當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論