2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第1頁
2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第2頁
2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第3頁
2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第4頁
2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆云南省昆明市嵩明一中數(shù)學(xué)高一上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)是奇函數(shù),且在上單調(diào)遞增的是()A. B.C. D.2.如圖,已知的直觀圖是一個直角邊長是1的等腰直角三角形,那么的面積是A. B.C.1 D.3.設(shè)函數(shù),,則是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)4.設(shè),,,則的大小關(guān)系是()A B.C. D.5.函數(shù)f(x)=|x|+(aR)的圖象不可能是()A. B.C. D.6.若直線經(jīng)過兩點,且傾斜角為45°,則m的值為A. B.1C.2 D.7.將函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心是A. B.C. D.8.下列函數(shù),其中既是偶函數(shù)又在區(qū)間上單調(diào)遞減的函數(shù)為A. B.C. D.9.三棱錐的外接球為球,球的直徑是,且,都是邊長為1的等邊三角形,則三棱錐的體積是A. B.C. D.10.關(guān)于三個數(shù),,的大小,下面結(jié)論正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合,,且,則實數(shù)的取值范圍是__________12.等腰直角△ABC中,AB=BC=1,M為AC的中點,沿BM把△ABC折成二面角,折后A與C的距離為1,則二面角C—BM—A的大小為_____________.13.一條光線從A處射到點B(0,1)后被軸反射,則反射光線所在直線的一般式方程為_____________.14.給出下列五個論斷:①;②;③;④;⑤.以其中的兩個論斷作為條件,一個論斷作為結(jié)論,寫出一個正確的命題:___________.15.函數(shù)定義域為______.16.已知,,,則的最大值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)證明在上是增函數(shù);(2)求在上的最大值及最小值.18.為了考查甲乙兩種小麥的長勢,分別從中抽取10株苗,測得苗高如下:甲12131415101613111511乙111617141319681016哪種小麥長得比較整齊?19.已知函數(shù).(1)若在上是減函數(shù),求的取值范圍;(2)設(shè),,若函數(shù)有且只有一個零點,求實數(shù)的取值范圍.20.已知,函數(shù).(1)求函數(shù)的定義域;(2)求函數(shù)的零點;(3)若函數(shù)的最大值為2,求的值.21.計算下列各式的值:(I);(Ⅱ)log327+lg25+1g4+log42.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用冪函數(shù)的單調(diào)性和奇函數(shù)的定義即可求解.【詳解】當(dāng)時,冪函數(shù)為增函數(shù);當(dāng)時,冪函數(shù)為減函數(shù),故在上單調(diào)遞減,、和在上單調(diào)遞增,從而A錯誤;由奇函數(shù)定義可知,和不是奇函數(shù),為奇函數(shù),從而BC錯誤,D正確.故選:D.2、D【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖與還原為原幾何圖形,利用三角形面積公式可得結(jié)果.【詳解】平面直觀圖與其原圖形如圖,直觀圖是直角邊長為的等腰直角三角形,還原回原圖形后,邊還原為長度不變,仍為,直觀圖中的在原圖形中還原為長度,且長度為,所以原圖形的面積為,故選D.【點睛】本題主要考查直觀圖還原幾何圖形,屬于簡單題.利用斜二測畫法作直觀圖,主要注意兩點:一是與軸平行的線段仍然與與軸平行且相等;二是與軸平行的線段仍然與軸平行且長度減半.3、D【解析】通過誘導(dǎo)公式,結(jié)合正弦函數(shù)的性質(zhì)即可得結(jié)果.【詳解】,所以,,所以則是最小正周期為的奇函數(shù),故選:D.4、C【解析】詳解】,即,選.5、C【解析】對分類討論,將函數(shù)寫成分段形式,利用對勾函數(shù)的單調(diào)性,逐一進行判斷圖象即可.【詳解】,①當(dāng)時,,圖象如A選項;②當(dāng)時,時,,在遞減,在遞增;時,,由,單調(diào)遞減,所以在上單調(diào)遞減,故圖象為B;③當(dāng)時,時,,可得,,在遞增,即在遞增,圖象為D;故選:C.6、A【解析】由兩點坐標求出直線的斜率,再由斜率等于傾斜角的正切值列出方程求得的值.【詳解】因為經(jīng)過兩點,的直線的傾斜角為45°,∴,解得,故選A【點睛】本題主要考查了直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.7、A【解析】由函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍得到,向右平移個單位得到,將代入得,所以函數(shù)的一個對稱中心是,故選A8、A【解析】分別考查函數(shù)的奇偶性和函數(shù)的單調(diào)性即可求得最終結(jié)果.【詳解】逐一考查所給的函數(shù)的性質(zhì):A.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞減;B.,函數(shù)為非奇非偶函數(shù),在區(qū)間上單調(diào)遞增;C.,函數(shù)為奇函數(shù),在區(qū)間上單調(diào)遞減;D.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞增;據(jù)此可得滿足題意的函數(shù)只有A選項.本題選擇A選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.9、B【解析】試題分析:取BC中點M,則有,所以三棱錐的體積是,選B.考點:三棱錐體積【思想點睛】空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解10、D【解析】引入中間變量0和2,即可得到答案;【詳解】,,,,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,是的子集,故.【點睛】本題主要考查集合的研究對象和交集的概念,考查指數(shù)不等式的求解方法,考查二次函數(shù)的值域等知識.對于一個集合,首先要確定其研究對象是什么元素,是定義域還是值域,是點還是其它的元素.二次函數(shù)的值域主要由開口方向和對稱軸來確定.在解指數(shù)或?qū)?shù)不等式時,要注意底數(shù)對單調(diào)性的影響.12、【解析】分別計算出的長度,然后結(jié)合二面角的求法,找出二面角,即可.【詳解】結(jié)合題意可知,所以,而發(fā)現(xiàn)所以,結(jié)合二面角找法:如果兩平面內(nèi)兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角,故為所求的二面角,為【點睛】本道題目考查了二面角的求法,尋求二面角方法:兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角13、【解析】根據(jù)反射光線的性質(zhì),確定反射光線上的兩個點的坐標,最后確定直線的一般式方程.【詳解】因為一條光線從A處射到點B(0,1)后被軸反射,所以點A關(guān)于直線對稱點為,根據(jù)對稱性可知,反射光線所在直線過點,又因為反射光線所在直線又過點,所以反射光線所在直線斜率為,所以反射光線所在直線方程為,化成一般式得:,故答案為:.14、②③?⑤;③④?⑤;②④?⑤【解析】利用不等式的性質(zhì)和做差比較即可得到答案.【詳解】由②③?⑤,因為,,則.由③④?⑤,由于,,則,所以.由②④?⑤,由于,且,則,所以.故答案為:②③?⑤;③④?⑤;②④?⑤15、【解析】解余弦不等式,即可得出其定義域.【詳解】由對數(shù)函數(shù)的定義知即,∴,∴函數(shù)的定義域為。故答案為:16、【解析】由題知,進而令,,再結(jié)合基本不等式求解即可.【詳解】解:,當(dāng)時取等,所以,故令,則,所以,當(dāng)時,等號成立.所以的最大值為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)當(dāng)時,有最小值2;當(dāng)時,有最大值.【解析】(1)根據(jù)單調(diào)性的定義,直接證明,即可得出結(jié)論;(2)根據(jù)(1)的結(jié)果,確定函數(shù)在給定區(qū)間的單調(diào)性,即可得出結(jié)果.【詳解】(1)證明:在上任取,,且,,,,,,,即,故在上是增函數(shù);(2)解:由(1)知:在上是增函數(shù),當(dāng)時,有最小值2;當(dāng)時,有最大值.【點睛】本題主要考查證明函數(shù)單調(diào)性,以及由函數(shù)單調(diào)性求最值,屬于??碱}型.18、乙種小麥長得比較整齊.【解析】根據(jù)題意,要比較甲、乙兩種小麥的長勢更整齊,需比較它們的方差,先求出其平均數(shù),再根據(jù)方差的計算方法計算方差,進行比較可得結(jié)論試題解析:由題中條件可得:,,,,∵,∴乙種小麥長得比較整齊.點睛:平均數(shù)與方差都是重要的數(shù)字特征,是對總體的一種簡明的描述,它們所反映的情況有著重要的實際意義,平均數(shù)、中位數(shù)、眾數(shù)描述其集中趨勢,方差和標準差描述其波動大小,方差或標準差越小,則數(shù)據(jù)分布波動較小,相對比較穩(wěn)定19、(1)(2)【解析】(1)由題意結(jié)合函數(shù)單調(diào)性的定義得到關(guān)于a的表達式,結(jié)合指數(shù)函數(shù)的性質(zhì)確定的取值范圍即可;(2)利用換元法將原問題轉(zhuǎn)化為二次方程根的分布問題,然后求解實數(shù)的取值范圍即可.【詳解】(1)由題設(shè),若在上是減函數(shù),則任取,,且,都有,即成立.∵.又在上是增函數(shù),且,∴由,得,即,且.∴只須,解.由,,且,知,∴,即,∴.所以在上是減函數(shù),實數(shù)的取值范圍是.(2)由題知方程有且只有一個實數(shù)根,令,則關(guān)于的方程有且只有一個正根.若,則,不符合題意,舍去;若,則方程兩根異號或有兩個相等的正根.方程兩根異號等價于解得;方程有兩個相等的正根等價于解得;綜上所述,實數(shù)的取值范圍為.【點睛】本題主要考查函數(shù)的單調(diào)性,二次方程根的分布等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1);(2)零點為或;(3).【解析】(1)由函數(shù)的解析式可得,解可得的取值范圍,即可得答案,(2)根據(jù)題意,由函數(shù)零點的定義可得,即,解可得的值,即可得答案,(3)根據(jù)題意,將函數(shù)的解析式變形可得,設(shè),分析的最大值可得的最大值為,則有,解可得的值,即可得答案.【詳解】解:(1)根據(jù)題意,,必有,解可得,即函數(shù)的定義域為,(2),若,即,即,解可得:或,即函數(shù)的零點為或,(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論