版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省重點初中2026屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.2.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.3.過拋物線的焦點的直線交該拋物線于,兩點,為坐標(biāo)原點.若,則直線的斜率為()A. B. C. D.4.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.5.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.06.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.8.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.9.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于10.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.11.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.12.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.16.若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知頂點是坐標(biāo)原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點對稱.(1)求和的標(biāo)準(zhǔn)方程;(2)過點的直線與交于,與交于,求證:.18.(12分)已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點P的坐標(biāo)為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.19.(12分)已知拋物線:()上橫坐標(biāo)為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.20.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當(dāng)時,求證:.21.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應(yīng)的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標(biāo)方程;(2)若點A,B為曲線上的兩個點且,求的值.22.(10分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時,記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時,求且的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.2、D【解析】
由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.3、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點,準(zhǔn)線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.4、C【解析】
設(shè)公差為,則由題意可得,解得,可得.令
,可得
當(dāng)時,,當(dāng)時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,
則,解得
,.
令
,可得,故當(dāng)時,,當(dāng)時,,
故數(shù)列前項和中最小的是.故選:C.【點睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式的應(yīng)用,屬于中檔題.5、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.6、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.7、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.8、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.9、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.10、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.11、D【解析】
根據(jù)復(fù)數(shù)運算,即可容易求得結(jié)果.【詳解】.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,屬基礎(chǔ)題.12、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復(fù)數(shù)對應(yīng)點坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14、3-260【解析】
(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.15、【解析】
由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.16、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時等號成立,所以,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析.【解析】分析:(1)設(shè)的標(biāo)準(zhǔn)方程為,由題意可設(shè).結(jié)合中點坐標(biāo)公式計算可得的標(biāo)準(zhǔn)方程為.半徑,則的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,則其方程為,由弦長公式可得.聯(lián)立直線與拋物線的方程有.設(shè),利用韋達(dá)定理結(jié)合弦長公式可得.則.即.詳解:(1)設(shè)的標(biāo)準(zhǔn)方程為,則.已知在直線上,故可設(shè).因為關(guān)于對稱,所以解得所以的標(biāo)準(zhǔn)方程為.因為與軸相切,故半徑,所以的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設(shè),則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.18、(1),拋物線;(2)存在,.【解析】
(1)設(shè),易得,化簡即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問題,考查學(xué)生的計算能力,是一道中檔題.19、(1);(2)【解析】
(1)根據(jù)橫坐標(biāo)為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設(shè)過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達(dá)定理代入求解.【詳解】(1)因為橫坐標(biāo)為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設(shè)過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.20、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導(dǎo),確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當(dāng)時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時,,所以,即.因為時,,所以當(dāng)時,,所以當(dāng)時,不等式成立.【點睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.21、(1)..(2)【解析】
(1)先求解a,b,消去參數(shù),即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭醫(yī)生簽約服務(wù)工作實施方案
- 2025年人工智能工程師職業(yè)能力考核試題及答案
- 土方開挖施工安全保證措施
- 2025年衛(wèi)生計生監(jiān)督協(xié)管培訓(xùn)考試題及答案
- 學(xué)校義務(wù)教育均衡發(fā)展實施方案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板新手也能輕松搞定
- 鋼結(jié)構(gòu)工程糾紛專用!建設(shè)工程施工合同糾紛要素式起訴狀模板
- 2026年保險規(guī)劃指導(dǎo)課程
- 2026 年無子女離婚協(xié)議書法定版
- 2026 年離婚協(xié)議書正式版
- 食品安全管理制度打印版
- 多聯(lián)機(jī)安裝施工方案
- 煤礦副斜井維修安全技術(shù)措施
- 公共視頻監(jiān)控系統(tǒng)運營維護(hù)要求
- 河南省職工養(yǎng)老保險參保人員關(guān)鍵信息變更核準(zhǔn)表
- 四川大學(xué)宣傳介紹PPT
- 小學(xué)數(shù)學(xué)人教版六年級上冊全冊電子教案
- 液氨儲罐區(qū)風(fēng)險評估與安全設(shè)計
- 阿司匹林在一級預(yù)防中應(yīng)用回顧
- 2023年福??h政務(wù)中心綜合窗口人員招聘筆試模擬試題及答案解析
- GB/T 4103.10-2000鉛及鉛合金化學(xué)分析方法銀量的測定
評論
0/150
提交評論