Adata:AI數(shù)據(jù)互聯(lián)互通狀況報告-2026年展望_第1頁
Adata:AI數(shù)據(jù)互聯(lián)互通狀況報告-2026年展望_第2頁
Adata:AI數(shù)據(jù)互聯(lián)互通狀況報告-2026年展望_第3頁
Adata:AI數(shù)據(jù)互聯(lián)互通狀況報告-2026年展望_第4頁
Adata:AI數(shù)據(jù)互聯(lián)互通狀況報告-2026年展望_第5頁
已閱讀5頁,還剩69頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

cct

StateofAIData

ConnectivityReport:

2026Outlook

Over200dataandAIleaderssaydatainfrastructureisthebiggestbarriertoAIsuccess

StateofAIDataConnectivityReport:2026Outlook2

cct

TheTopLine

TheAugust2025MITreport,TheGenAIDivide:StateofAIinBusiness2025,1madewavesamong

businessleadersandAIproductownerslargelyduetoitsheadlinestatistic:95%ofgenerativeAIpilotsatcompaniesarefailing.Withtheunprecedentedscaleofinvestmentandthehighexpectationsfor

enterpriseapplicationsoflargelanguagemodels(LLMs),bothGenAIevangelistsandskepticswerequicktoweighinonthedisappointingoutcomesoftheseearlyexperiments.

Whiletheaccuracyofthatspecificstatisticcontinuestobedebated,thecoreissueitsurfacesisnot:alargeshareofcompaniesarefailingtorealizemeaningfulROIfromtheirAIefforts.Themoreimportantquestionis,why?

Wesurveyed200+dataandAIleaders,bothfromenterpriseswithinternalAIadoptioninitiativesaswellassoftwarecompaniesembeddingAIcopilotsandagentsintotheirproducts.Andhere’swhatwelearned:enterpriseAIisnolongerlimitedbymodels.It’sconstrainedbydatainfrastructureandenterprisecontext.

ThestrongestpredictorofAIsuccessin2026isthematurityoftheunderlyingdatainfrastructurethatdeliversenterprisecontexttothesemodels.

Infact,60%ofcompaniesatthehighestlevelofAImaturityalsohavethemostmaturedata

infrastructure.Andtheinverseisalsotrue:53%ofcompanieswithimmatureAIhaveimmaturedatasystems.

Inthisreport,AImaturityreferstotheextenttowhichanorganizationhasoperationalizedAI,movingbeyondexperimentationtomeasurablebusinessimpact.Ourframeworkconsidersdimensions

suchasmodeldeployment,dataintegrationmaturity,governance,andROItracking.Wecategorizematurityinafive-stageprogressiveframeworkthatdrawsfromEY-Parthenon’sAImaturitymodel:

experimenting,implementing,scaling,optimizing,andleading.2

“TheparadoxofAIreadinessisthatourdatainfrastructure

becomesmorepowerfulnotthroughendlessadaptability,

butthroughintentionalsemanticboundariesthatgiveLLMs

thepredictablecontractstheyneedtoorchestratecomplex

workflows.Withoutthisdeliberatearchitectureofconstraints,

we’releftwithsystemsthatburntokensonambiguityratherthandeliveringvalue.”

—CarlisiaCampos,AISoftwareEngineer,GrokkingTech

1“TheGenAIDivide:StateofAIinBusiness2025”,MITNANDA,Aug.18,2025

2“HowaTop-DownHolisticStrategyCanMaximizeGenAIROI”,EY-Parthenon,June18,2024

StateofAIDataConnectivityReport:2026Outlook3

cct

AsanyoneusingenterpriseAItoolslikeChatGPT,LangChain,orAgentforcecanattest,it’snosurprisethatcontextplaysadefiningroleinAImaturity.Largelanguagemodelsdependheavilyonitfor

accurate,reliable,usefuloutputs.Whatissurprisingishowfeworganizationsareactuallysetuptodeliverthatcontext.

Otherfindingsfromtheresearchhighlightthespecificchallengesstandingbetweenintentionandexecution.Acrossbothenterprisesandsoftwareproviders,wefound:

Finding

Implication

71%ofAIteamsspendmorethanaquarteroftheir

Whensignificantresourcesaretiedupindata

implementationtimeondataintegration—including

integration,attentionispulledawayfromstrategic

modelingdata,implementingETLpipelines,configuringconnectors.

productdevelopmentandinnovation.

46%oforganizationsrequirereal-timeaccesstosix

EachAIusecaserequiresconnectingtomultiple

ormoredatasourcesforanaverageAIusecase.

systems,whichaddsarchitecturalcomplexityandincreasestheburdenondatateams.

AI-nativesoftwareprovidersare3xmorelikelyto

Modernsoftwarecompaniesarearchitectingfor

requiremorethan26externaldataintegrationsin

scalefromdayone,exposingintegrationgapsin

product,ascomparedtotraditionalproviders(46%vs.15%).

moretraditionalproviders.

100%oforganizationssayreal-timedatais

necessaryforAIagentsandcustomerservice

automation.While80%ofenterpriseshavebegunimplementingreal-timeintegration,mostarestillintheearlystagesofscalingiteffectively.

Thereisasignificantreal-timeintegrationcapabilitygapthatcouldlimittheadoptionofAIagentsandautomationatscale.

Allhigh-AI-maturity(“l(fā)eading”)enterpriseshave

Semanticallyconsistentdataaccessisnotjust

builtcentralized,semanticallyconsistentdata

abestpractice?it’sbecominganAIimperative.

access:80%oflow-maturity(“experimenting”)

Softwareprovidersandenterprisesthatlackitwill

enterpriseshaven’tevenstarted.

struggletokeepup.

58%ofrespondentsprioritizestructureddata

sources(organized,schema-basedformatslikedatabasesandAPIs)forAIfeatures,whileonly

11%primarilyrelyonunstructureddata(free-formcontentsuchasdocuments,chatlogs,and

mediafiles).

There’slotsofdiscussionaboutunstructureddata,butstructureddataremainsthecorebuildingblockformostAIapplications.

Only9%ofrespondentsrankAImodelacquisitionordevelopmentastheirtopinvestmentpriority,but83%areimplementingorplanningacentralized,

semanticallyconsistentdataaccesslayer.

Themarketisprioritizingdatainfrastructureovermodelbuilding,signalingthatdataaccessistherealbottleneckinAIprogress.

StateofAIDataConnectivityReport:2026Outlook4

cct

Thesurveyresultspointtoasoberingtruth:generativeandagenticAIaren’tbottleneckedbythe

capabilitiesoffoundationalAImodels,butbyaccesstoconnected,contextualized,controlleddata.AndtheAIlandscapeisrifewithdataintegrationissues,fromfragmentedsystemstoalackof

connectorsandreal-timeinfrastructure.

That’sthebadnews.Thegoodnews?Thereareenterprisesandsoftwareprovidersthataregettingitright,andthesurveysurfacedthekeyinitiatives,priorities,andinvestmentsbehindtheirsuccess.Ifyou’reanenterpriselookingtoself-assessyourAImaturityorthecurrentstateofout-of-the-

boxagenticAIsolutions,thisreportoffersvaluableinsight.Ifyou’reasoftwareprovideraimingtobenchmarkyourselfagainstindustryleadersandbetterunderstandenterpriseinvestmentpriorities,you’llalsofindpracticalguidancehere.

Thereportismadeupoftwomajorparts:

1.EnterpriseAIadoptionanddatachallenges:AdeepdiveintohowenterpriseorganizationsaredeployingAIandwhatinfrastructuralblockersareslowingprogress.

2.ProductAIstrategyamongsoftwareproviders:AnexplorationofhowproductleadersareembeddingAIintotheirplatformsandwhydataintegrationremainsacriticaldependency.

Together,thesesectionsformacomprehensivepictureofhowdataconnectivity,infrastructurematurity,andintegrationstrategydictateAIsuccessinbothenterpriseandproductcontexts.

StateofAIDataConnectivityReport:2026Outlook5

cct

TableofContents

SurveyMethodologyandRespondentDemographics 6

PartI:EnterpriseAIAdoptionandtheDataInfrastructureGap 9

EnterpriseAIisn’tonthehorizon:it’sinproduction 9

Stuckinthemiddle:mostenterprisesareimplementingandscalingAI,butveryfewareleading 10

KnowledgeassistanceandcustomerserviceautomationarethemostprevalentapplicationsofenterpriseAI 11

AmajorityoforganizationshavealreadydeployedagenticAIsystems 12

AItoolsprawlisfragmentingcontext,atatimewhencontextmattersmost 13

ThecurrentstateofdatainfrastructurepoweringAI 14

EnterpriseAIleadersarelargelyunsatisfiedwithcurrentintegrationarchitecture 14

WhendataconnectivitybecomestheAIbottleneck 16

Real-timeintegrationisamaturitymarker 20

Beyondmodels:thearchitectureandcapabilitiesofAIreadiness 21

AImaturitycorrelateswithintegrationmaturity 21

Centralized,semanticallyenricheddataaccessisaprerequisiteforscalableAI 21

TopinvestmentareasforAIsuccess 24

PartII:TheSoftwareProviderLensandAIProductStrategy 25

AIfeaturesarebecomingtablestakesforproductleaders 26

DatafragmentationandintegrationisthebiggestlimitingfactorforAIfeaturedevelopment 28

MostAIusecasesneedmultipleintegrationstocustomerdata 31

Semanticstandardizationandreal-timeintegrationdemandsfromenterprisesareshapingproductroadmaps 33

TheFinalSay:TheAIConnectivityImperative 36

GlossaryofTerms 37

StateofAIDataConnectivityReport:2026Outlook6

cct

SurveyMethodologyand

RespondentDemographics

Theinsightsinthisreportdrawfromtwocomplementarysurveysconductedin2025;onecapturingtheperspectiveofenterpriseAIimplementationleaders,andtheotherfromproductleaders

atsoftwareproviders.Together,theyofferadualviewofhoworganizationsareadoptingand

operationalizingAI:fromenterprisesembeddingAIintotheiroperations,tosoftwareprovidersbuildingAIdirectlyintotheirproducts.EachsurveyaimedtouncoverthecurrentstateofAIadoption,the

infrastructurechallengesshapingprogress,andtheinvestmentprioritiesdefiningthenextphaseofAImaturity.Accordingly,PartIofthereportfocusesonenterpriseAIadoptionandthedatainfrastructuregap,whilePartIIexaminesthesoftwareproviderperspectiveandtheevolvingstrategiesbehindAI-

poweredproductdevelopment.

PartImethodology:Weusedanindependentresearchfirmtoblindsurvey100enterprisedataandAIleaders,acrossindustriesandsizesrangingfromstartuptoover$10Binannualrecurringrevenue.

Nearlyhalf(49%)oftherespondentswereC-levelexecutivesresponsiblefortechnology,IT,data,

andAIfunctions.Includingthe22%VPsanddirectorswhorespondedtothesurvey,thedatasetisstronglyrepresentativeofenterpriseleaderswithdecision-makingauthorityandamandatetodriveorganization-wideimpactthroughtheadoptionofAI.

ChiefTechnologyOfficer(CTO)

ChiefDataorAIOfficer(CDO/CAIO)

HeadofData/HeadofAI

30%

17%

14%

2%

6%

9%

9%

13%

ChiefInformationOfficer(CIO)

EnterpriseDataArchitect

VPorDirectorofAI/ML

AIProductorPlatformOwner

VPorDirectorofData

Seventy-fourpercentofrespondentswerefromcompanieswithmorethan$500Minannualrevenue,whiletheremaining26%belongedtomid-sizedcompaniesandstartups.ThedatasetisthusskewedtowardorganizationsthathavebiggerITbudgetsandexposuretoawideswathofAIanddata

infrastructureapproachesinthemarket.

StateofAIDataConnectivityReport:2026Outlook7

cct

Under$50M

$50M-$249M

$250M-500M

$500M-$2B

$2B-10B

Over$10B

5%

12%

9%

30%

23%

21%

Thisrespondentmixreflectsafront-rowviewofhowAIisbeingbuiltanddeployedtodayintheenterprise.

PartIImethodology:Thishalfofthereportrepresentsresultsfromablindsurveyconductedbyan

independentresearchfirmof100productandengineeringleadersfromamixofsoftwarecompanies,rangingfromAI-nativestartupstosomeofthemostestablishedplayersinSaaSandenterprise

platforms.ThisoffersusauniquelycomprehensiveviewintohowdifferentproductstrategiesintersectwithAIreadinessandintegrationapproaches.

13%

6%

AInativecompany

Cloudprovider/hyperscaler

31%

Horizontalenterpriseapplication

50%VerticalSaaS

Inthiscohort,58%ofrespondentsaresoftwareprovidersreporting$500MormoreinARR.Titles

includeproductleadersacrossfunctions:fortypercentareVPsordirectorsofproduct,withsignificantrepresentationfromengineering,architecture,andAIleadershiproles.Twenty-ninepercentareC-leveldecision-makers(CTOsandCPOs),settingorganization-wideprioritiesregardingAIimplementationinproduct.

StateofAIDataConnectivityReport:2026Outlook8

cct

$50M-$249M

$250M-500M

Over$500M

19%

23%

58%

ChiefProductOfficer

(CPO)

ChiefTechnologyOfficer(CTO)

HeadofAI/MLorAIProduct

TechnicalProductManagerorAI

9%

20%

8%

5%

40%

18%

VPorDirector

ofEngineering/Architecture

VPorDirectorofProductManagement

Definitionsusedinthisreport(seeglossaryoftermsonpage37foradditionaldefinitions):

GenerativeAI(GenAI)—AI-poweredfeaturesbuiltintoproductsthathelpcustomerscompletetasksbygeneratingcontent,surfacinginsights,orinteractingwithdata,oftenusingLLMs.Thisreport

focusesontwocommonGenAIapplications:

?AICo-pilot—AnAI-poweredassistantembeddedinyourproductthathelpsuserscompletetasksbygeneratingcontent,retrievingdata,coding,orrecommendingnextsteps,butalwaysrequireshumaninputtoinitiateorapproveactions.Example:Acopilotthatsummarizesrecentcustomeractivityandsuggestsfollow-upactions,whichtheuserreviewsandapproves.

?AutonomousAIAgent—Actswithminimalornohumanpromptingtocompletetasksorachievegoals.Theseagentscanreason,makedecisions,andtakeactionacrosssystemsorworkflowsonbehalfoftheuser.Example:anAIagentthatmonitorspipelineactivity,flagsat-riskdeals,andsendsproactivealertsormessages.

StateofAIDataConnectivityReport:2026Outlook9

PartI:EnterpriseAIAdoptionandtheDataInfrastructureGap

ThefindingsbelowhighlightkeythemesthatemergedfromoursurveyofenterpriseleadersresponsibleforadvancingAIadoptionandmaturity.

Keytakeaways:

?AIisalreadyinproduction,notinpilot.78%ofenterpriseshavemovedbeyondexperimentation,embeddingAIintooperations,butonly17%areinadvancedstageswhereROIismeasurable.

?AIcapabilitiesandmodelsizearenotthetopblockerstoadoption.

Dataandcontextare.73%oforganizationscitedataqualityand

integrationastopblockers,and71%spendoveraquarterofAIprojecttimejustondataconnectivity.

?Scaleandmaturitygohand?in?hand.Largeenterpriseswithmaturedatainfrastructurearepullingahead,while80%offirmsunder$50MinARRremainstuckinearlyimplementation.

?Real?time,governeddataisthenewdifferentiator.60%rank

governanceand42%rankreal?timeconnectivityastopinvestmentpriorities,farsurpassinginvestmentintheAImodelsthemselves(9%).

?Fragmentedtoolsdemandunifiedintegration.44%oforganizationslisted“l(fā)ackofunifiedmetadataandsemanticcontext”amongtheirtopfivecurrentblockerstoenterpriseAIadoption,and83%oforganizationshavebuiltorareplanningtobuildcentralized,semanticallyconsistentdataaccess.

Whatfollowsisadeepdiveintothepriorities,roadblocks,andemergingtrendsshapingenterpriseAIadoption,basedonthesurveyresults.

EnterpriseAIisn’tonthehorizon:it’sinproduction

Finding:

Beyondexperimentation:66%ofcompaniesaredeployingGenAIandautonomousagentstoaugmenthumanworkflows.

StateofAIDataConnectivityReport:2026Outlook10

cct

Stuckinthemiddle:mostenterprisesareimplementingandscalingAI,butveryfewareleading

AIisnotafutureaspirationformostenterprises.It’shere.Infact,78%ofenterprisesarepastthepilotphase,withAIuse-casesalreadyembeddedinoperations.

Amajorityofenterprises(68%)fallintothemiddlestagesofAImaturity,betweenthe“implementing”and“scaling”stages.However,only17%areinadvancedstages(“optimizing”or“l(fā)eading”)whereROIismeasurableandAIiscoretostrategy.

WherewouldyouplaceyourorganizationontheAImaturitycurve?

Stage%oforganizations

Experimenting(earlypilots,proofsofconcept,learningphase)

Implementing(deployinginitialproductionusecases,establishinggovernance)

Scaling(expandingAIacrossmultipledepartmentsandusecases)

Optimizing(AIintegratedintocoreoperations,measuringROIandefficiency)

Leading(AIdrivescompetitiveadvantageandinnovationstrategy)

15%

37%

31%

7%

10%

Thedataalsoshowsbiggercompaniesarepullingahead.Only4.8%ofenterprisesover$10Bin

annualrevenuearestillintheearlystageofexperimentingwithAI,while80%ofthoseunder$50Minannualrevenueremainstuckinearlyimplementation.

100%

80%

60%

40%

20%

0%

Under$50M

$50M-$249M

$250M-$500M

$500M-$2B

$2B-$10B

Over$10B

ExperimentingImplementingLeadingOptimizingScaling

Implication:Scalematters.Largeenterpriseshavethedatainfrastructureandin-housetalenttooperationalizeAI,whilesmallerfirmsarestilllayingthepipestogetpilotsofftheground.

StateofAIDataConnectivityReport:2026Outlook11

cct

“Ayearago,weimplementedAIassistantswithinallourcall

centers,fullyinproduction.Itisfullyintegratedwithourbackenddata,sowhenacustomercalls,itautomaticallyrecognizestheirnumber,looksuptheorder,thedeliverystatus,andanswersthecall,allbeforeahumanagentcanevenpickupthecall,inreal-time.Theresultsweredramatic.”

—SVPofTechnologyPortfolio,globalretailbrand

KnowledgeassistanceandcustomerserviceautomationarethemostprevalentapplicationsofenterpriseAI

Earlysuccessstoriesfocusoninternalknowledgeassistantsandcustomersupportautomation.Codegenerationisclosebehind.Theseusecasesthriveonaccesstobothstructured(databases,APIs,spreadsheets)andunstructured(images,emails,documents)data,butevenmoreadvancedcapabilities(e.g.,AIagents,decisionsupport)aregainingtraction.

WhichusecasesisyourorganizationtargetingwithGenAIoragenticAItodayorinthenearfuture?

Usecase%ofOrgs

Employeeoragentco-pilot(e.g.,internalknowledgeassistants,agentaugmentation)

Customersupportandserviceautomation(e.g.,virtualagents,chatbots,ticketdeflection)

AI-poweredsearchorknowledgeretrieval(e.g.,RAGsystems,semanticsearch)Codegenerationoraugmentation(e.g.,internaldevtools,LLM-driven

refactoring)

Intelligentdocumentprocessing(e.g.,summarization,extraction,classification)

Marketingorcontentgeneration(e.g.,campaigncopy,imagegeneration,personalization)

Processorworkflowautomation(e.g.,agent-triggeredactions,RPAaugmentation)

Decisionsupportorscenarioanalysis(e.g.,contextualinsights,what-ifmodeling)

PredictiveanalyticsforGTM,revenue,orcustomerretention

Internalbusinessintelligenceenhancement(e.g.,naturallanguagedashboards)

Predictiveanalyticsforsupplychain,logistics,oroperations

AIagentorchestrationacrosssystems(e.g.,updatingrecords,syncingworkflows)

79%

70%

61%

60%

58%

55%

54%

52%

49%

47%

37%

33%

ipsum

StateofAIDataConnectivityReport:2026Outlook12

cct

AIchatassistantsandagentsareprimarilydeployedtoaugmenthumanworkflows,notreplacethem.Thetopusecases,employee/agentcopilots(79%)andcustomersupportautomation(70%),signal

thatenterprisesarefocusingonhuman-in-the-loopaugmentation.TheseusecaseshelpknowledgeworkersoperatemoreefficientlywithouthandingoverfullcontroltoAI.

Theimpressiveadoptionofcodegeneration(60%)andmarketing/contentcreation(55%)showsthatAIisnowembeddedintechnicalandcreativeworkflowsalike.Theseareproductivitymultipliersthatarelowriskbuthighimpact,andareoftenearlywinsforAIadoption.

Implication:EnterprisesarebettingonAItoboostproductivity,notreplacepeople.Theearlyfocusoncopilots,supportautomation,andcodegenerationshowsthatadoptioniscenteredonpractical,human-in-the-loopusecasesthatdeliverfastvaluewithlowerrisk.

AmajorityoforganizationshavealreadydeployedagenticAIsystems

GenerativeandagenticAIadoptionisprevalent,withaclearshiftfromexperimentationtodeployment,especiallyaroundagent-basedusecases.

Whatbestdescribesyourorganization’scurrentinternalengagementwithgenerativeandagenticAI?

WeareinearlyexplorationorPoCstagesforenterpriseAIsolutions

7%

7%

66%

We'vedeployedoraredeployingbothgenerativeAIusecasesandAIagents

We'vedeployedorare deployinggenerativeAIusecases,butnotAIagents

20%

We'vedeployedoraredeployingAIagents

Implication:AIagentadoptionisn’ttheoretical.It’salreadyhappeningatscale,signalingafast-movingshifttowardmoreautonomous,workflow-integratedAI.

“Dataisabsolutelythelifebloodofagentsactuallybeinghelpful

foryourenterprise.Andso,havingtherightconnections,therightfidelity,therightsecurity,therightcompliancearoundyourdataisallcritical.”

—PhilipStephens,SeniorStaffSoftwareEngineer,Google

StateofAIDataConnectivityReport:2026Outlook13

cct

AItoolsprawlisfragmentingcontextatatimewhencontext

mattersmost

While76%oforganizationsleveragefoundationalmodelsinenterpriseLLMplatforms,theAI

technologystackisnotcentralized.EnterprisesalsoreportsignificantuseofBI-nativecopilots,agentplatforms,andcustomerserviceAI.

WhichAIapplicationsorplatformsaremostimportanttoyourorganization’susecases?

Platformcategory

EnterpriseLLMplatforms(OpenAI,Claude,Gemini)

Enterprisedataplatforms

(Snowflake,Databricks,etc.)

BusinessintelligenceAI

(MicrosoftCopilot,TableauAI,etc.)

CodegenerationAI

(GitHubCopilot,Cursor,etc.)

EnterpriseAIagents(SalesforceAgentforce,CopilotStudio)

CloudAIservices

(Vertex,Bedrock,AzureAI,etc.)

CustomerserviceAI

(ZendeskAI,ServiceNowAI)

CustomAIapplications(BuiltIn-House)

AIdevelopmentframeworks(LangChain,LlamaIndex,etc.)

OpensourceAImodels(Llama,Mistral,etc.)

Industry-specificAIsolutions

76%

65%

54%

48%

43%

34%

31%

29%

28%

20%

14%

Implication:Thissprawlcreatesintegrationcomplexityandcontextfragmentationthatmustbeaddressedthroughcentralized,tool-agnosticsemanticsandintegration.

StateofAIDataConnectivityReport:2026Outlook14

cct

“Mostenterprises,especiallyoldercompanieswithlotsofhistory,havedisparatesystemsthatarecobbledtogether.Yourabilitytogetvalueoutofthesedataassetsislargelyafunctionofyourdataintegrationcapability.”

—ChiefDataandAnalyticsOfficer,Fortune100manufacturer

ThecurrentstateofdatainfrastructurepoweringAI

Finding:

Only6%ofenterprisesaresatisfiedwiththeircurrentdatainfrastructureforAI.

EnterpriseAIleadersarelargelyunsatisfiedwithcurrentintegrationarchitecture

Mostenterprisesstillrelyonamixoffragileormanualapproaches,with53%relyingoncustom-builtAPIs,connectors,anddatapipelinestodeliverenterprisedatacontexttoAImodels.

HowdoesyourorganizationcurrentlyconnectAIsystemstoenterprisedatasources?

Custom-builtAPIs,connectors,anddatapipelines

Out-of-the-boxconnectorsfrom

dataintegration/ETL/ELTplatformsDirectdatabaseconnections

Clouddataplatformintegrations (Snowflake,Databricks,etc.)Manualdataexportsandimports Third-partyiPaaSsolutions(MuleSoft,SnapLogic,etc.)

53%

31%

23%

13%

3%

3%

Overall,organizationsreportahighdegreeofpainanddissatisfactionwiththeircurrentintegrationstrategyandinfrastructure.Only6%reportedtheywere“verysatisfied”withtheirintegrationstrategy.FourteenpercentreportedtheirintegrationstrategycreatessignificantchallengesforAIinitiatives.

StateofAIDataConnectivityReport:2026Outlook15

cct

HowsatisfiedareyouwithyourcurrentdataconnectivityapproachforAIinitiatives,

includingingestionofdatafromsourcesystems,contextinjectionforGenAImodels,real-timedataintegration,etc.?

60%

50%

40%

30%

20%

10%

0

55%

Somewhatsatisfied:

Worksbuthaslimitations

14%

Somewhatdissatisfied:Createssignificant

challengesforAIinitiatives

25%

Neutral:Adequateforcurrentneeds

6%

Verysatisfied:

Meetsallour

needsefficiently

“AItechnologyhasadvancedfasterthanorganizationaldata

capabilities,creatingacriticalbottleneckforAIadoption.WhilesophisticatedAImodelsarereadilyavailable,mostcompaniesstrugglewithpoordataquality,fragmentedsystems,and

inadequatedatapreparationprocesses.Ultimately,AIsuccessdependsmoreonhavinghigh-quality,well-prepareddatathanonhavingthemostadvancedmodels.”

—HarshitKohli,Sr.TechnicalAccountManager,AWS

StateofAIDataConnectivityReport:2026Outlook16

cct

Implication:Thecostofbespokeintegrationishigh;notjustindollars,butindelaysandfragility.The

MITReportonEnterpriseAIadoption

indicatesthatcustom-builtsolutionsresultinasignificantly

higherrateoffailureforenterpriseAIinitiatives.Theoveralldissatisfactionexpressedbyenterpriseda

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論