版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
cct
StateofAIData
ConnectivityReport:
2026Outlook
Over200dataandAIleaderssaydatainfrastructureisthebiggestbarriertoAIsuccess
StateofAIDataConnectivityReport:2026Outlook2
cct
TheTopLine
TheAugust2025MITreport,TheGenAIDivide:StateofAIinBusiness2025,1madewavesamong
businessleadersandAIproductownerslargelyduetoitsheadlinestatistic:95%ofgenerativeAIpilotsatcompaniesarefailing.Withtheunprecedentedscaleofinvestmentandthehighexpectationsfor
enterpriseapplicationsoflargelanguagemodels(LLMs),bothGenAIevangelistsandskepticswerequicktoweighinonthedisappointingoutcomesoftheseearlyexperiments.
Whiletheaccuracyofthatspecificstatisticcontinuestobedebated,thecoreissueitsurfacesisnot:alargeshareofcompaniesarefailingtorealizemeaningfulROIfromtheirAIefforts.Themoreimportantquestionis,why?
Wesurveyed200+dataandAIleaders,bothfromenterpriseswithinternalAIadoptioninitiativesaswellassoftwarecompaniesembeddingAIcopilotsandagentsintotheirproducts.Andhere’swhatwelearned:enterpriseAIisnolongerlimitedbymodels.It’sconstrainedbydatainfrastructureandenterprisecontext.
ThestrongestpredictorofAIsuccessin2026isthematurityoftheunderlyingdatainfrastructurethatdeliversenterprisecontexttothesemodels.
Infact,60%ofcompaniesatthehighestlevelofAImaturityalsohavethemostmaturedata
infrastructure.Andtheinverseisalsotrue:53%ofcompanieswithimmatureAIhaveimmaturedatasystems.
Inthisreport,AImaturityreferstotheextenttowhichanorganizationhasoperationalizedAI,movingbeyondexperimentationtomeasurablebusinessimpact.Ourframeworkconsidersdimensions
suchasmodeldeployment,dataintegrationmaturity,governance,andROItracking.Wecategorizematurityinafive-stageprogressiveframeworkthatdrawsfromEY-Parthenon’sAImaturitymodel:
experimenting,implementing,scaling,optimizing,andleading.2
“TheparadoxofAIreadinessisthatourdatainfrastructure
becomesmorepowerfulnotthroughendlessadaptability,
butthroughintentionalsemanticboundariesthatgiveLLMs
thepredictablecontractstheyneedtoorchestratecomplex
workflows.Withoutthisdeliberatearchitectureofconstraints,
we’releftwithsystemsthatburntokensonambiguityratherthandeliveringvalue.”
—CarlisiaCampos,AISoftwareEngineer,GrokkingTech
1“TheGenAIDivide:StateofAIinBusiness2025”,MITNANDA,Aug.18,2025
2“HowaTop-DownHolisticStrategyCanMaximizeGenAIROI”,EY-Parthenon,June18,2024
StateofAIDataConnectivityReport:2026Outlook3
cct
AsanyoneusingenterpriseAItoolslikeChatGPT,LangChain,orAgentforcecanattest,it’snosurprisethatcontextplaysadefiningroleinAImaturity.Largelanguagemodelsdependheavilyonitfor
accurate,reliable,usefuloutputs.Whatissurprisingishowfeworganizationsareactuallysetuptodeliverthatcontext.
Otherfindingsfromtheresearchhighlightthespecificchallengesstandingbetweenintentionandexecution.Acrossbothenterprisesandsoftwareproviders,wefound:
Finding
Implication
71%ofAIteamsspendmorethanaquarteroftheir
Whensignificantresourcesaretiedupindata
implementationtimeondataintegration—including
integration,attentionispulledawayfromstrategic
modelingdata,implementingETLpipelines,configuringconnectors.
productdevelopmentandinnovation.
46%oforganizationsrequirereal-timeaccesstosix
EachAIusecaserequiresconnectingtomultiple
ormoredatasourcesforanaverageAIusecase.
systems,whichaddsarchitecturalcomplexityandincreasestheburdenondatateams.
AI-nativesoftwareprovidersare3xmorelikelyto
Modernsoftwarecompaniesarearchitectingfor
requiremorethan26externaldataintegrationsin
scalefromdayone,exposingintegrationgapsin
product,ascomparedtotraditionalproviders(46%vs.15%).
moretraditionalproviders.
100%oforganizationssayreal-timedatais
necessaryforAIagentsandcustomerservice
automation.While80%ofenterpriseshavebegunimplementingreal-timeintegration,mostarestillintheearlystagesofscalingiteffectively.
Thereisasignificantreal-timeintegrationcapabilitygapthatcouldlimittheadoptionofAIagentsandautomationatscale.
Allhigh-AI-maturity(“l(fā)eading”)enterpriseshave
Semanticallyconsistentdataaccessisnotjust
builtcentralized,semanticallyconsistentdata
abestpractice?it’sbecominganAIimperative.
access:80%oflow-maturity(“experimenting”)
Softwareprovidersandenterprisesthatlackitwill
enterpriseshaven’tevenstarted.
struggletokeepup.
58%ofrespondentsprioritizestructureddata
sources(organized,schema-basedformatslikedatabasesandAPIs)forAIfeatures,whileonly
11%primarilyrelyonunstructureddata(free-formcontentsuchasdocuments,chatlogs,and
mediafiles).
There’slotsofdiscussionaboutunstructureddata,butstructureddataremainsthecorebuildingblockformostAIapplications.
Only9%ofrespondentsrankAImodelacquisitionordevelopmentastheirtopinvestmentpriority,but83%areimplementingorplanningacentralized,
semanticallyconsistentdataaccesslayer.
Themarketisprioritizingdatainfrastructureovermodelbuilding,signalingthatdataaccessistherealbottleneckinAIprogress.
StateofAIDataConnectivityReport:2026Outlook4
cct
Thesurveyresultspointtoasoberingtruth:generativeandagenticAIaren’tbottleneckedbythe
capabilitiesoffoundationalAImodels,butbyaccesstoconnected,contextualized,controlleddata.AndtheAIlandscapeisrifewithdataintegrationissues,fromfragmentedsystemstoalackof
connectorsandreal-timeinfrastructure.
That’sthebadnews.Thegoodnews?Thereareenterprisesandsoftwareprovidersthataregettingitright,andthesurveysurfacedthekeyinitiatives,priorities,andinvestmentsbehindtheirsuccess.Ifyou’reanenterpriselookingtoself-assessyourAImaturityorthecurrentstateofout-of-the-
boxagenticAIsolutions,thisreportoffersvaluableinsight.Ifyou’reasoftwareprovideraimingtobenchmarkyourselfagainstindustryleadersandbetterunderstandenterpriseinvestmentpriorities,you’llalsofindpracticalguidancehere.
Thereportismadeupoftwomajorparts:
1.EnterpriseAIadoptionanddatachallenges:AdeepdiveintohowenterpriseorganizationsaredeployingAIandwhatinfrastructuralblockersareslowingprogress.
2.ProductAIstrategyamongsoftwareproviders:AnexplorationofhowproductleadersareembeddingAIintotheirplatformsandwhydataintegrationremainsacriticaldependency.
Together,thesesectionsformacomprehensivepictureofhowdataconnectivity,infrastructurematurity,andintegrationstrategydictateAIsuccessinbothenterpriseandproductcontexts.
StateofAIDataConnectivityReport:2026Outlook5
cct
TableofContents
SurveyMethodologyandRespondentDemographics 6
PartI:EnterpriseAIAdoptionandtheDataInfrastructureGap 9
EnterpriseAIisn’tonthehorizon:it’sinproduction 9
Stuckinthemiddle:mostenterprisesareimplementingandscalingAI,butveryfewareleading 10
KnowledgeassistanceandcustomerserviceautomationarethemostprevalentapplicationsofenterpriseAI 11
AmajorityoforganizationshavealreadydeployedagenticAIsystems 12
AItoolsprawlisfragmentingcontext,atatimewhencontextmattersmost 13
ThecurrentstateofdatainfrastructurepoweringAI 14
EnterpriseAIleadersarelargelyunsatisfiedwithcurrentintegrationarchitecture 14
WhendataconnectivitybecomestheAIbottleneck 16
Real-timeintegrationisamaturitymarker 20
Beyondmodels:thearchitectureandcapabilitiesofAIreadiness 21
AImaturitycorrelateswithintegrationmaturity 21
Centralized,semanticallyenricheddataaccessisaprerequisiteforscalableAI 21
TopinvestmentareasforAIsuccess 24
PartII:TheSoftwareProviderLensandAIProductStrategy 25
AIfeaturesarebecomingtablestakesforproductleaders 26
DatafragmentationandintegrationisthebiggestlimitingfactorforAIfeaturedevelopment 28
MostAIusecasesneedmultipleintegrationstocustomerdata 31
Semanticstandardizationandreal-timeintegrationdemandsfromenterprisesareshapingproductroadmaps 33
TheFinalSay:TheAIConnectivityImperative 36
GlossaryofTerms 37
StateofAIDataConnectivityReport:2026Outlook6
cct
SurveyMethodologyand
RespondentDemographics
Theinsightsinthisreportdrawfromtwocomplementarysurveysconductedin2025;onecapturingtheperspectiveofenterpriseAIimplementationleaders,andtheotherfromproductleaders
atsoftwareproviders.Together,theyofferadualviewofhoworganizationsareadoptingand
operationalizingAI:fromenterprisesembeddingAIintotheiroperations,tosoftwareprovidersbuildingAIdirectlyintotheirproducts.EachsurveyaimedtouncoverthecurrentstateofAIadoption,the
infrastructurechallengesshapingprogress,andtheinvestmentprioritiesdefiningthenextphaseofAImaturity.Accordingly,PartIofthereportfocusesonenterpriseAIadoptionandthedatainfrastructuregap,whilePartIIexaminesthesoftwareproviderperspectiveandtheevolvingstrategiesbehindAI-
poweredproductdevelopment.
PartImethodology:Weusedanindependentresearchfirmtoblindsurvey100enterprisedataandAIleaders,acrossindustriesandsizesrangingfromstartuptoover$10Binannualrecurringrevenue.
Nearlyhalf(49%)oftherespondentswereC-levelexecutivesresponsiblefortechnology,IT,data,
andAIfunctions.Includingthe22%VPsanddirectorswhorespondedtothesurvey,thedatasetisstronglyrepresentativeofenterpriseleaderswithdecision-makingauthorityandamandatetodriveorganization-wideimpactthroughtheadoptionofAI.
ChiefTechnologyOfficer(CTO)
ChiefDataorAIOfficer(CDO/CAIO)
HeadofData/HeadofAI
30%
17%
14%
2%
6%
9%
9%
13%
ChiefInformationOfficer(CIO)
EnterpriseDataArchitect
VPorDirectorofAI/ML
AIProductorPlatformOwner
VPorDirectorofData
Seventy-fourpercentofrespondentswerefromcompanieswithmorethan$500Minannualrevenue,whiletheremaining26%belongedtomid-sizedcompaniesandstartups.ThedatasetisthusskewedtowardorganizationsthathavebiggerITbudgetsandexposuretoawideswathofAIanddata
infrastructureapproachesinthemarket.
StateofAIDataConnectivityReport:2026Outlook7
cct
Under$50M
$50M-$249M
$250M-500M
$500M-$2B
$2B-10B
Over$10B
5%
12%
9%
30%
23%
21%
Thisrespondentmixreflectsafront-rowviewofhowAIisbeingbuiltanddeployedtodayintheenterprise.
PartIImethodology:Thishalfofthereportrepresentsresultsfromablindsurveyconductedbyan
independentresearchfirmof100productandengineeringleadersfromamixofsoftwarecompanies,rangingfromAI-nativestartupstosomeofthemostestablishedplayersinSaaSandenterprise
platforms.ThisoffersusauniquelycomprehensiveviewintohowdifferentproductstrategiesintersectwithAIreadinessandintegrationapproaches.
13%
6%
AInativecompany
Cloudprovider/hyperscaler
31%
Horizontalenterpriseapplication
50%VerticalSaaS
Inthiscohort,58%ofrespondentsaresoftwareprovidersreporting$500MormoreinARR.Titles
includeproductleadersacrossfunctions:fortypercentareVPsordirectorsofproduct,withsignificantrepresentationfromengineering,architecture,andAIleadershiproles.Twenty-ninepercentareC-leveldecision-makers(CTOsandCPOs),settingorganization-wideprioritiesregardingAIimplementationinproduct.
StateofAIDataConnectivityReport:2026Outlook8
cct
$50M-$249M
$250M-500M
Over$500M
19%
23%
58%
ChiefProductOfficer
(CPO)
ChiefTechnologyOfficer(CTO)
HeadofAI/MLorAIProduct
TechnicalProductManagerorAI
9%
20%
8%
5%
40%
18%
VPorDirector
ofEngineering/Architecture
VPorDirectorofProductManagement
Definitionsusedinthisreport(seeglossaryoftermsonpage37foradditionaldefinitions):
GenerativeAI(GenAI)—AI-poweredfeaturesbuiltintoproductsthathelpcustomerscompletetasksbygeneratingcontent,surfacinginsights,orinteractingwithdata,oftenusingLLMs.Thisreport
focusesontwocommonGenAIapplications:
?AICo-pilot—AnAI-poweredassistantembeddedinyourproductthathelpsuserscompletetasksbygeneratingcontent,retrievingdata,coding,orrecommendingnextsteps,butalwaysrequireshumaninputtoinitiateorapproveactions.Example:Acopilotthatsummarizesrecentcustomeractivityandsuggestsfollow-upactions,whichtheuserreviewsandapproves.
?AutonomousAIAgent—Actswithminimalornohumanpromptingtocompletetasksorachievegoals.Theseagentscanreason,makedecisions,andtakeactionacrosssystemsorworkflowsonbehalfoftheuser.Example:anAIagentthatmonitorspipelineactivity,flagsat-riskdeals,andsendsproactivealertsormessages.
StateofAIDataConnectivityReport:2026Outlook9
PartI:EnterpriseAIAdoptionandtheDataInfrastructureGap
ThefindingsbelowhighlightkeythemesthatemergedfromoursurveyofenterpriseleadersresponsibleforadvancingAIadoptionandmaturity.
Keytakeaways:
?AIisalreadyinproduction,notinpilot.78%ofenterpriseshavemovedbeyondexperimentation,embeddingAIintooperations,butonly17%areinadvancedstageswhereROIismeasurable.
?AIcapabilitiesandmodelsizearenotthetopblockerstoadoption.
Dataandcontextare.73%oforganizationscitedataqualityand
integrationastopblockers,and71%spendoveraquarterofAIprojecttimejustondataconnectivity.
?Scaleandmaturitygohand?in?hand.Largeenterpriseswithmaturedatainfrastructurearepullingahead,while80%offirmsunder$50MinARRremainstuckinearlyimplementation.
?Real?time,governeddataisthenewdifferentiator.60%rank
governanceand42%rankreal?timeconnectivityastopinvestmentpriorities,farsurpassinginvestmentintheAImodelsthemselves(9%).
?Fragmentedtoolsdemandunifiedintegration.44%oforganizationslisted“l(fā)ackofunifiedmetadataandsemanticcontext”amongtheirtopfivecurrentblockerstoenterpriseAIadoption,and83%oforganizationshavebuiltorareplanningtobuildcentralized,semanticallyconsistentdataaccess.
Whatfollowsisadeepdiveintothepriorities,roadblocks,andemergingtrendsshapingenterpriseAIadoption,basedonthesurveyresults.
EnterpriseAIisn’tonthehorizon:it’sinproduction
Finding:
Beyondexperimentation:66%ofcompaniesaredeployingGenAIandautonomousagentstoaugmenthumanworkflows.
StateofAIDataConnectivityReport:2026Outlook10
cct
Stuckinthemiddle:mostenterprisesareimplementingandscalingAI,butveryfewareleading
AIisnotafutureaspirationformostenterprises.It’shere.Infact,78%ofenterprisesarepastthepilotphase,withAIuse-casesalreadyembeddedinoperations.
Amajorityofenterprises(68%)fallintothemiddlestagesofAImaturity,betweenthe“implementing”and“scaling”stages.However,only17%areinadvancedstages(“optimizing”or“l(fā)eading”)whereROIismeasurableandAIiscoretostrategy.
WherewouldyouplaceyourorganizationontheAImaturitycurve?
Stage%oforganizations
Experimenting(earlypilots,proofsofconcept,learningphase)
Implementing(deployinginitialproductionusecases,establishinggovernance)
Scaling(expandingAIacrossmultipledepartmentsandusecases)
Optimizing(AIintegratedintocoreoperations,measuringROIandefficiency)
Leading(AIdrivescompetitiveadvantageandinnovationstrategy)
15%
37%
31%
7%
10%
Thedataalsoshowsbiggercompaniesarepullingahead.Only4.8%ofenterprisesover$10Bin
annualrevenuearestillintheearlystageofexperimentingwithAI,while80%ofthoseunder$50Minannualrevenueremainstuckinearlyimplementation.
100%
80%
60%
40%
20%
0%
Under$50M
$50M-$249M
$250M-$500M
$500M-$2B
$2B-$10B
Over$10B
ExperimentingImplementingLeadingOptimizingScaling
Implication:Scalematters.Largeenterpriseshavethedatainfrastructureandin-housetalenttooperationalizeAI,whilesmallerfirmsarestilllayingthepipestogetpilotsofftheground.
StateofAIDataConnectivityReport:2026Outlook11
cct
“Ayearago,weimplementedAIassistantswithinallourcall
centers,fullyinproduction.Itisfullyintegratedwithourbackenddata,sowhenacustomercalls,itautomaticallyrecognizestheirnumber,looksuptheorder,thedeliverystatus,andanswersthecall,allbeforeahumanagentcanevenpickupthecall,inreal-time.Theresultsweredramatic.”
—SVPofTechnologyPortfolio,globalretailbrand
KnowledgeassistanceandcustomerserviceautomationarethemostprevalentapplicationsofenterpriseAI
Earlysuccessstoriesfocusoninternalknowledgeassistantsandcustomersupportautomation.Codegenerationisclosebehind.Theseusecasesthriveonaccesstobothstructured(databases,APIs,spreadsheets)andunstructured(images,emails,documents)data,butevenmoreadvancedcapabilities(e.g.,AIagents,decisionsupport)aregainingtraction.
WhichusecasesisyourorganizationtargetingwithGenAIoragenticAItodayorinthenearfuture?
Usecase%ofOrgs
Employeeoragentco-pilot(e.g.,internalknowledgeassistants,agentaugmentation)
Customersupportandserviceautomation(e.g.,virtualagents,chatbots,ticketdeflection)
AI-poweredsearchorknowledgeretrieval(e.g.,RAGsystems,semanticsearch)Codegenerationoraugmentation(e.g.,internaldevtools,LLM-driven
refactoring)
Intelligentdocumentprocessing(e.g.,summarization,extraction,classification)
Marketingorcontentgeneration(e.g.,campaigncopy,imagegeneration,personalization)
Processorworkflowautomation(e.g.,agent-triggeredactions,RPAaugmentation)
Decisionsupportorscenarioanalysis(e.g.,contextualinsights,what-ifmodeling)
PredictiveanalyticsforGTM,revenue,orcustomerretention
Internalbusinessintelligenceenhancement(e.g.,naturallanguagedashboards)
Predictiveanalyticsforsupplychain,logistics,oroperations
AIagentorchestrationacrosssystems(e.g.,updatingrecords,syncingworkflows)
79%
70%
61%
60%
58%
55%
54%
52%
49%
47%
37%
33%
ipsum
StateofAIDataConnectivityReport:2026Outlook12
cct
AIchatassistantsandagentsareprimarilydeployedtoaugmenthumanworkflows,notreplacethem.Thetopusecases,employee/agentcopilots(79%)andcustomersupportautomation(70%),signal
thatenterprisesarefocusingonhuman-in-the-loopaugmentation.TheseusecaseshelpknowledgeworkersoperatemoreefficientlywithouthandingoverfullcontroltoAI.
Theimpressiveadoptionofcodegeneration(60%)andmarketing/contentcreation(55%)showsthatAIisnowembeddedintechnicalandcreativeworkflowsalike.Theseareproductivitymultipliersthatarelowriskbuthighimpact,andareoftenearlywinsforAIadoption.
Implication:EnterprisesarebettingonAItoboostproductivity,notreplacepeople.Theearlyfocusoncopilots,supportautomation,andcodegenerationshowsthatadoptioniscenteredonpractical,human-in-the-loopusecasesthatdeliverfastvaluewithlowerrisk.
AmajorityoforganizationshavealreadydeployedagenticAIsystems
GenerativeandagenticAIadoptionisprevalent,withaclearshiftfromexperimentationtodeployment,especiallyaroundagent-basedusecases.
Whatbestdescribesyourorganization’scurrentinternalengagementwithgenerativeandagenticAI?
WeareinearlyexplorationorPoCstagesforenterpriseAIsolutions
7%
7%
66%
We'vedeployedoraredeployingbothgenerativeAIusecasesandAIagents
We'vedeployedorare deployinggenerativeAIusecases,butnotAIagents
20%
We'vedeployedoraredeployingAIagents
Implication:AIagentadoptionisn’ttheoretical.It’salreadyhappeningatscale,signalingafast-movingshifttowardmoreautonomous,workflow-integratedAI.
“Dataisabsolutelythelifebloodofagentsactuallybeinghelpful
foryourenterprise.Andso,havingtherightconnections,therightfidelity,therightsecurity,therightcompliancearoundyourdataisallcritical.”
—PhilipStephens,SeniorStaffSoftwareEngineer,Google
StateofAIDataConnectivityReport:2026Outlook13
cct
AItoolsprawlisfragmentingcontextatatimewhencontext
mattersmost
While76%oforganizationsleveragefoundationalmodelsinenterpriseLLMplatforms,theAI
technologystackisnotcentralized.EnterprisesalsoreportsignificantuseofBI-nativecopilots,agentplatforms,andcustomerserviceAI.
WhichAIapplicationsorplatformsaremostimportanttoyourorganization’susecases?
Platformcategory
EnterpriseLLMplatforms(OpenAI,Claude,Gemini)
Enterprisedataplatforms
(Snowflake,Databricks,etc.)
BusinessintelligenceAI
(MicrosoftCopilot,TableauAI,etc.)
CodegenerationAI
(GitHubCopilot,Cursor,etc.)
EnterpriseAIagents(SalesforceAgentforce,CopilotStudio)
CloudAIservices
(Vertex,Bedrock,AzureAI,etc.)
CustomerserviceAI
(ZendeskAI,ServiceNowAI)
CustomAIapplications(BuiltIn-House)
AIdevelopmentframeworks(LangChain,LlamaIndex,etc.)
OpensourceAImodels(Llama,Mistral,etc.)
Industry-specificAIsolutions
76%
65%
54%
48%
43%
34%
31%
29%
28%
20%
14%
Implication:Thissprawlcreatesintegrationcomplexityandcontextfragmentationthatmustbeaddressedthroughcentralized,tool-agnosticsemanticsandintegration.
StateofAIDataConnectivityReport:2026Outlook14
cct
“Mostenterprises,especiallyoldercompanieswithlotsofhistory,havedisparatesystemsthatarecobbledtogether.Yourabilitytogetvalueoutofthesedataassetsislargelyafunctionofyourdataintegrationcapability.”
—ChiefDataandAnalyticsOfficer,Fortune100manufacturer
ThecurrentstateofdatainfrastructurepoweringAI
Finding:
Only6%ofenterprisesaresatisfiedwiththeircurrentdatainfrastructureforAI.
EnterpriseAIleadersarelargelyunsatisfiedwithcurrentintegrationarchitecture
Mostenterprisesstillrelyonamixoffragileormanualapproaches,with53%relyingoncustom-builtAPIs,connectors,anddatapipelinestodeliverenterprisedatacontexttoAImodels.
HowdoesyourorganizationcurrentlyconnectAIsystemstoenterprisedatasources?
Custom-builtAPIs,connectors,anddatapipelines
Out-of-the-boxconnectorsfrom
dataintegration/ETL/ELTplatformsDirectdatabaseconnections
Clouddataplatformintegrations (Snowflake,Databricks,etc.)Manualdataexportsandimports Third-partyiPaaSsolutions(MuleSoft,SnapLogic,etc.)
53%
31%
23%
13%
3%
3%
Overall,organizationsreportahighdegreeofpainanddissatisfactionwiththeircurrentintegrationstrategyandinfrastructure.Only6%reportedtheywere“verysatisfied”withtheirintegrationstrategy.FourteenpercentreportedtheirintegrationstrategycreatessignificantchallengesforAIinitiatives.
StateofAIDataConnectivityReport:2026Outlook15
cct
HowsatisfiedareyouwithyourcurrentdataconnectivityapproachforAIinitiatives,
includingingestionofdatafromsourcesystems,contextinjectionforGenAImodels,real-timedataintegration,etc.?
60%
50%
40%
30%
20%
10%
0
55%
Somewhatsatisfied:
Worksbuthaslimitations
14%
Somewhatdissatisfied:Createssignificant
challengesforAIinitiatives
25%
Neutral:Adequateforcurrentneeds
6%
Verysatisfied:
Meetsallour
needsefficiently
“AItechnologyhasadvancedfasterthanorganizationaldata
capabilities,creatingacriticalbottleneckforAIadoption.WhilesophisticatedAImodelsarereadilyavailable,mostcompaniesstrugglewithpoordataquality,fragmentedsystems,and
inadequatedatapreparationprocesses.Ultimately,AIsuccessdependsmoreonhavinghigh-quality,well-prepareddatathanonhavingthemostadvancedmodels.”
—HarshitKohli,Sr.TechnicalAccountManager,AWS
StateofAIDataConnectivityReport:2026Outlook16
cct
Implication:Thecostofbespokeintegrationishigh;notjustindollars,butindelaysandfragility.The
MITReportonEnterpriseAIadoption
indicatesthatcustom-builtsolutionsresultinasignificantly
higherrateoffailureforenterpriseAIinitiatives.Theoveralldissatisfactionexpressedbyenterpriseda
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游景區(qū)導(dǎo)游服務(wù)標準手冊(標準版)
- 倉儲物流管理系統(tǒng)操作與維護指南(標準版)
- 2026年上海市高三語文一模文學(xué)文本閱讀八大高頻題型詳解與真題例析
- 信息技術(shù)培訓(xùn)與支持服務(wù)手冊(標準版)
- 通信設(shè)備維護與保養(yǎng)規(guī)范(標準版)
- 食品生產(chǎn)過程控制與質(zhì)量管理指南(標準版)
- 商業(yè)地產(chǎn)租賃與運營規(guī)范(標準版)
- 醫(yī)療護理服務(wù)質(zhì)量規(guī)范(標準版)
- 2025-2030中國谷物種植市場運營模式與競爭策略分析研究報告
- 股東合作協(xié)議條款及風(fēng)險控制方案
- 成立合資公司合同范本
- 比亞迪索賠培訓(xùn)課件
- 民航安全法律法規(guī)課件
- 2026屆四川省瀘州高級中學(xué)高一生物第一學(xué)期期末經(jīng)典試題含解析
- 山東省濟寧市2026屆第一學(xué)期高三質(zhì)量檢測期末考試濟寧一模英語(含答案)
- 2026標準版離婚協(xié)議書-無子女無共同財產(chǎn)債務(wù)版
- 光伏電站巡檢培訓(xùn)課件
- 【期末必刷選擇題100題】(新教材)統(tǒng)編版八年級道德與法治上學(xué)期專項練習(xí)選擇題100題(含答案與解析)
- 年末節(jié)前安全教育培訓(xùn)
- GB/T 93-2025緊固件彈簧墊圈標準型
- 建筑公司工資薪酬管理制度(3篇)
評論
0/150
提交評論