2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題含解析_第1頁
2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題含解析_第2頁
2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題含解析_第3頁
2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題含解析_第4頁
2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆內蒙古開來中學數(shù)學高二上期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或2.設函數(shù)是定義在上的奇函數(shù),且,當時,有恒成立.則不等式的解集為()A. B.C. D.3.若,則=()A.244 B.1C. D.4.在正四面體中,棱長為2,且E是棱AB中點,則的值為A. B.1C. D.5.設函數(shù)的導函數(shù)是,若,則()A. B.C. D.6.若雙曲線的一個焦點為,則的值為()A. B.C.1 D.7.已知拋物線,過點作拋物線的兩條切線,點為切點.若的面積不大于,則的取值范圍是()A. B.C. D.8.四棱錐中,底面ABCD是平行四邊形,點E為棱PC的中點,若,則等于()A.1 B.C. D.29.雙曲線的兩個焦點坐標是()A.和 B.和C.和 D.和10.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為16,則乙組數(shù)據(jù)的平均數(shù)為()A.12 B.10C.8 D.611.已知,則()A. B.C. D.12.直線分別與曲線,交于,兩點,則的最小值為()A. B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知命題p:若,則,那么命題p的否命題為______14.若直線l經(jīng)過A(2,1),B(1,)兩點,則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.15.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.16.據(jù)相關數(shù)據(jù)統(tǒng)計,部分省市的政府工作報告將“推進5G通信網(wǎng)絡建設”列入2020年的重點工作,2020年一月份全國共建基站3萬個如果從2月份起,以后的每個月比上一個月多建設0.2萬個,那么2020年這一年全國共有基站________萬個三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,有一條長度為3的線段,端點,分別在軸、軸上運動,為線段上一點,且.(1)求點的軌跡的方程;(2)已知不過原點的直線與相交于,兩點,且線段始終被直線平分.求的面積取最大時直線的方程.18.(12分)已知等比數(shù)列的公比,且,是的等差中項.數(shù)列的前n項和為,滿足,.(1)求和的通項公式;(2)設,求的前2n項和.19.(12分)記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.20.(12分)已知函數(shù).若圖象上的點處的切線斜率為(1)求a,b的值;(2)的極值21.(12分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由22.(10分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C2、B【解析】根據(jù)當時,可知在上單調遞減,結合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結果.【詳解】,當時,,在上單調遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題,關鍵是能夠通過構造函數(shù)的方式,確定所構造函數(shù)的單調性和奇偶性,進而根據(jù)零點確定不等式的解集.3、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.4、A【解析】根據(jù)題意,由正四面體的性質可得:,可得,由E是棱中點,可得,代入,利用數(shù)量積運算性質即可得出.【詳解】如圖所示由正四面體的性質可得:可得:是棱中點故選:【點睛】本題考查空間向量的線性運算,考查立體幾何中的垂直關系,考查轉化與化歸思想,屬于中等題型.5、A【解析】求導后,令,可求得,再令可求得結果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導數(shù)的計算,考查了求導函數(shù)值,屬于基礎題.6、B【解析】由題意可知雙曲線的焦點在軸,從而可得,再列方程可求得結果【詳解】因為雙曲線的一個焦點為,所以,,所以,解得,故選:B7、C【解析】由題意,設,直線方程為,則由點到直線的距離公式求出點到直線的距離,再聯(lián)立直線與拋物線方程,由韋達定理及弦長公式求出,進而可得,結合即可得答案.【詳解】解:因為拋物線的性質:在拋物線上任意一點處的切線方程為,設,所以在點處的切線方程為,在點B處的切線方程為,因為兩條切線都經(jīng)過點,所以,,所以直線的方程為,即,點到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.8、B【解析】運用向量的線性運用表示向量,對照系數(shù),求得,代入可得選項.【詳解】因為,所以,所以,所以,解得,所以,故選:B.9、C【解析】由雙曲線標準方程可得到焦點所在軸及半焦距的長,進而得到兩個焦點坐標.【詳解】雙曲線中,,則又雙曲線焦點在y軸,故雙曲線的兩個焦點坐標是和故選:C10、A【解析】根據(jù)眾數(shù)的概念,求得的值,再根據(jù)平均數(shù)的計算公式,即可求解.【詳解】由題意,甲組數(shù)據(jù)的眾數(shù)為16,得,所以乙組數(shù)據(jù)的平均數(shù)為故選:A.11、B【解析】根據(jù)基本初等函數(shù)的導數(shù)公式及求導法則求導函數(shù)即可.【詳解】.故選:B.12、B【解析】設,,,,得到,用導數(shù)法求解.【詳解】解:設,,,,則,,,令,則,函數(shù)在上單調遞減,在上單調遞增,時,函數(shù)的最小值為1,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】直接利用否命題的定義,對原命題的條件與結論都否定即可得結果【詳解】因為命題:若,則,所以否定條件與結論后,可得命題的否命題為若,則,故答案為若,則,【點睛】本題主要考查命題的否命題,意在考查對基礎知識的掌握與應用,屬于基礎題14、①.②.【解析】根據(jù)直線l經(jīng)過A(2,1),B(1,)兩點,利用斜率公式,結合二次函數(shù)性質求解;設其傾斜角為,,利用正切函數(shù)的性質求解.【詳解】因為直線l經(jīng)過A(2,1),B(1,)兩點,所以l的斜率為,所以l的斜率取值范圍為,設其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,15、4【解析】根據(jù)橢圓焦點在軸上方程的特征進行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:416、2##【解析】由題意可知一月份到十二月份基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,根據(jù)等差數(shù)列求和公式可得答案.【詳解】一月份全國共建基站3萬個,2月全國共建基站萬個,3月全國共建基站萬個,,12月全國共建基站萬個,基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,2020年這一年全國共有基站萬個.故答案為:49.2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設,根據(jù)題意可得,,利用兩點之間的距離公式表示出,化簡即可得出結果;(2)設,,線段的中點為,利用兩點坐標表示直線斜率的公式和點差法求出直線的斜率,設的方程為,聯(lián)立橢圓方程并消去y得到關于x的一元二次方程,根據(jù)韋達定理表示、進而得出弦長,利用點到直線的距離公式求出原點到的距離,結合基本不等式計算即可.【小問1詳解】設,由為線段上一點,且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設,,線段的中點為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設直線的方程為,由可得,則解得且由韋達定理,得,∴∵原點到直線的距離為∴,當且僅當,即時等號成立,即時,三角形的面積最大,此時直線的方程為.18、(1),()(2)【解析】(1)等差數(shù)列和等比數(shù)列的基本量的計算,根據(jù)條件列出方程,并解方程即可;(2)數(shù)列根據(jù)的奇偶分段表示,奇數(shù)項通過乘公比錯位相減法克求得前項和,偶數(shù)項則是通過裂項求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當時,,當時,,經(jīng)檢驗,時,適合上式,故().綜上可得:,【小問2詳解】由(1)可知,當n為奇數(shù)時,,當n為偶數(shù)時,,由題意,有①②①-②得:,則有:..故.19、(1)(2),【解析】(1)由,計算出公差,再寫出通項公式即可.(2)直接用公式寫出,配方后求出最小值.【小問1詳解】設公差為,由得,從而,即又,【小問2詳解】由(1)的結論,,,當時,取得最小值.20、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)圖象上的點處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導函數(shù),根據(jù)導函數(shù)的符號求得函數(shù)的單調區(qū)間,再根據(jù)極值的定義即可得解.【小問1詳解】解:,,;【小問2詳解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的極大值為,極小值為.21、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標公式并結合韋達定理計算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標準方程為:【小問2詳解】依題意,設直線l方程為,由消去x并整理得,設,,則,,假定存在點,直線TM與TN的斜率分別為,,,要使為定值,必有,即,當時,,,當時,,,所以存在點,使得直線TM與TN的斜率之積為定值【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論