2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆福建省泉州市安溪八中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線x2=4y上有一條長(zhǎng)為6的動(dòng)弦AB,則AB的中點(diǎn)到x軸的最短距離為()A. B.C.1 D.22.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.3.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.4.某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是.A.90 B.75C.60 D.455.已知等差數(shù)列的公差為,前項(xiàng)和為,等比數(shù)列的公比為,前項(xiàng)和為.若,則()A. B.C. D.6.在二面角的棱上有兩個(gè)點(diǎn)、,線段、分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱,若,,,,則這個(gè)二面角的大小為()A. B.C. D.7.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.378.已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,若,則橢圓的離心率的取值范圍是()A. B.C. D.9.若用面積為48的矩形ABCD截某圓錐得到一個(gè)橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.10.以橢圓+=1的焦點(diǎn)為頂點(diǎn),以這個(gè)橢圓的長(zhǎng)軸的端點(diǎn)為焦點(diǎn)的雙曲線方程是()A. B.C. D.11.《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個(gè)節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長(zhǎng)為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸12.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.將參加冬季越野跑的名選手編號(hào)為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號(hào)分為組后,第一組的到這個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________14.已知5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出的題不再放回,在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為________.15.若等比數(shù)列滿足,則的前n項(xiàng)和____________16.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項(xiàng)為__________,五邊形數(shù)的第項(xiàng)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且(1)求拋物線的方程;(2)過點(diǎn)作直線交拋物線于兩點(diǎn),設(shè),判斷是否為定值?若是,求出該定值;若不是,說明理由.18.(12分)如圖,在正方體中,E為的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值19.(12分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別a,b,c,若,,.求a的值20.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)21.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點(diǎn).(1)證明:平面;(2)設(shè),菱形的面積為,求二面角的余弦值.22.(10分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設(shè)弦AB的中點(diǎn)為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點(diǎn)),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.2、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)椋?,所以在中,邊上的中線等于的一半,所以.因?yàn)?,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A3、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A4、A【解析】樣本中產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.3,頻數(shù)為36,∴樣本總數(shù)為.∵樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為(0.100+0.150+0.125)×2=0.75,∴樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)為120×0.75=90.考點(diǎn):頻率分布直方圖.5、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項(xiàng).【詳解】若,則,而,此時(shí),這與題設(shè)不合,故,故,故,而,故,此時(shí)不確定,故選:D.6、C【解析】設(shè)這個(gè)二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個(gè)二面角的度數(shù)為,由題意得,,,解得,∴,∴這個(gè)二面角的度數(shù)為,故選:C.【點(diǎn)睛】本題考查利用向量的幾何運(yùn)算以及數(shù)量積研究面面角.7、C【解析】直接按照等差數(shù)列項(xiàng)數(shù)性質(zhì)求解即可.【詳解】數(shù)列的前6項(xiàng)之和為.故選:C.8、B【解析】根據(jù)題意得到,根據(jù),化簡(jiǎn)得到,進(jìn)而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,所以,,因?yàn)?,可得,即,又由,可得,可得,解得,又因?yàn)闄E圓的離心率,所以,即橢圓的離心率為.故選:B.【點(diǎn)睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.9、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項(xiàng)判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長(zhǎng)分別為,由矩形面積為48,得,對(duì)于選項(xiàng)B,D由于,不符合條件,不正確.對(duì)于選項(xiàng)A,,滿足題意.對(duì)于選項(xiàng)C,不正確.故選:A.10、B【解析】根據(jù)橢圓的幾何性質(zhì)求橢圓的焦點(diǎn)坐標(biāo)和長(zhǎng)軸端點(diǎn)坐標(biāo),由此可得雙曲線的a,b,c,再求雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長(zhǎng)軸端點(diǎn)坐標(biāo)為,,焦點(diǎn)坐標(biāo)為,,∴雙曲線的焦點(diǎn)在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.11、D【解析】結(jié)合等差數(shù)列知識(shí)求得正確答案.【詳解】設(shè)冬至日影長(zhǎng),公差為,則,所以立夏日影長(zhǎng)丈,即四尺五寸.故選:D12、D【解析】由題意,化簡(jiǎn)即可得出雙曲線的離心率【詳解】解:由題意,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以抽到穿白色衣服的選手號(hào)碼為,共14、.【解析】設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,求得,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】由題意,從5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出不再放回,設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,則,,所以在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為:.故答案為:.15、##【解析】由已知及等比數(shù)列的通項(xiàng)公式得到首項(xiàng)和公比,再利用前n項(xiàng)和公式計(jì)算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:16、①.②.【解析】對(duì)于三角形數(shù),根據(jù)圖形尋找前后之間的關(guān)系,從而歸納出規(guī)律利用求和公式即得,對(duì)于五邊形數(shù)根據(jù)圖形尋找前后之間的關(guān)系,然后利用累加法可得通項(xiàng)公式.【詳解】由題可知三角形數(shù)的第1項(xiàng)為1,第2項(xiàng)為3=1+2,第3項(xiàng)為6=1+2+3,第4項(xiàng)為10=1+2+3+4,,因此,第10項(xiàng)為;五邊形數(shù)的第1項(xiàng)為,第2項(xiàng)為,第3項(xiàng)為,第4項(xiàng)為,…,因此,,所以當(dāng)時(shí),,當(dāng)時(shí)也適合,故,即五邊形數(shù)的第項(xiàng)為.故答案為:55;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,0【解析】(1)根據(jù)題意,設(shè)拋物線的方程為:,則,,進(jìn)而根據(jù)得,進(jìn)而得答案;(2)直線的方程為,進(jìn)而聯(lián)立方程,結(jié)合韋達(dá)定理與向量數(shù)量積運(yùn)算化簡(jiǎn)整理即可得答案.【小問1詳解】解:由題意,設(shè)拋物線的方程為:,所以點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,因?yàn)椋?,即,解?所以拋物線的方程為:【小問2詳解】解:設(shè)直線的方程為,則聯(lián)立方程得,所以,,因?yàn)?,所?所以為定值.18、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;也可利用空間向量計(jì)算證明;(Ⅱ)可以將平面擴(kuò)展,將線面角轉(zhuǎn)化,利用幾何方法作出線面角,然后計(jì)算;也可以建立空間直角坐標(biāo)系,利用空間向量計(jì)算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標(biāo)法以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為,則、、、,,,設(shè)平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長(zhǎng)到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設(shè)正方體的棱長(zhǎng)為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設(shè)的中點(diǎn)為F,延長(zhǎng),易證三線交于一點(diǎn)P因?yàn)椋灾本€與平面所成的角,即直線與平面所成的角設(shè)正方體的棱長(zhǎng)為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設(shè)正方體的棱長(zhǎng)為2,點(diǎn)到平面的距離為h,在中,,,所以,易得由,得,解得,設(shè)直線與平面所成的角為,所以【整體點(diǎn)評(píng)】(Ⅰ)的方法一使用線面平行的判定定理證明,方法二使用空間向量坐標(biāo)運(yùn)算進(jìn)行證明;(II)第一種方法中使用純幾何方法,適合于沒有學(xué)習(xí)空間向量之前的方法,有利用培養(yǎng)學(xué)生的集合論證和空間想象能力,第二種方法使用空間向量方法,兩小題前后連貫,利用計(jì)算論證和求解,定為最優(yōu)解法;方法三在幾何法的基礎(chǔ)上綜合使用體積方法,計(jì)算較為簡(jiǎn)潔;方法四不作任何輔助線,僅利用正余弦定理和體積公式進(jìn)行計(jì)算,省卻了輔助線和幾何的論證,不失為一種優(yōu)美的方法.19、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡(jiǎn)函數(shù),再利用三角函數(shù)性質(zhì)計(jì)算作答.(2)由(1)的結(jié)論及已知求出角C,再利用余弦定理計(jì)算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調(diào)遞增,所以的最小正周期為,遞增區(qū)間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當(dāng)時(shí),,為直角三角形,與是鈍角三角形矛盾,當(dāng)時(shí),,,此時(shí),是鈍角三角形,則,所以a的值是2.20、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長(zhǎng)方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對(duì)應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.21、(1)證明見解析;(2).【解析】(1)連接交于點(diǎn),連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長(zhǎng),取中點(diǎn),可證,如圖建系,求得點(diǎn)坐標(biāo)及坐標(biāo),即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點(diǎn),連接,則、E分別為、的中點(diǎn),所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長(zhǎng)為,取中點(diǎn),連接,因?yàn)?,所以,以點(diǎn)為原點(diǎn),以方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立如圖所示坐標(biāo)系.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論