上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題含解析_第1頁
上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題含解析_第2頁
上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題含解析_第3頁
上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題含解析_第4頁
上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海大學附屬中學2026屆數(shù)學高一上期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.四面體中,各個側(cè)面都是邊長為的正三角形,分別是和的中點,則異面直線與所成的角等于()A.30° B.45°C.60° D.90°2.已知是定義域為的單調(diào)函數(shù),且對任意實數(shù),都有,則的值為()A.0 B.C. D.13.已知集合A=,B=,那么集合A∩B等于()A. B.C. D.4.已知角的終邊過點,則()A. B.C. D.5.已知集合,a=3.則下列關(guān)系式成立的是A.aAB.aAC.{a}AD.{a}∈A6.如圖,四邊形ABCD是平行四邊形,則12A.AB B.CDC.CB D.AD7.設(shè)命題,則為()A. B.C. D.8.已知角的終邊經(jīng)過點,且,則的值為()A. B.C. D.9.《九章算術(shù)》中“方田”章給出了計算弧田面積時所用的經(jīng)驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結(jié)果保留整數(shù))A.2 B.3C.4 D.510.若是第二象限角,是其終邊上的一點,且,則()A. B.C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若關(guān)于方程恰好有6個不相等的實數(shù)解,則實數(shù)的取值范圍為__________.12.在中,邊上的中垂線分別交于點若,則_______13.已知函數(shù),若,則______.14.求值:___________.15.一個圓錐的側(cè)面展開圖是半徑為3,圓心角為的扇形,則該圓錐的體積為________.16.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)是定義域為的任意函數(shù).(1)求證:函數(shù)是奇函數(shù),是偶函數(shù);(2)如果,試求(1)中的和的表達式.18.已知圓M與x軸相切于點(a,0),與y軸相切于點(0,a),且圓心M在直線上.過點P(2,1)直線與圓M交于兩點,點C是圓M上的動點.(1)求圓M的方程;(2)若直線AB的斜率不存在,求△ABC面積的最大值;(3)是否存在弦AB被點P平分?若存在,求出直線AB的方程;若不存在,說明理由.19.已知關(guān)于x的不等式對恒成立.(1)求的取值范圍;(2)當取得最小值時,求的值.20.如圖,在四邊形中,,,,為等邊三角形,是的中點.設(shè),.(1)用,表示,,(2)求與夾角的余弦值.21.已知直線(1)求與垂直,且與兩坐標軸圍成的三角形面積為4直線方程:(2)已知圓心為,且與直線相切求圓的方程;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用中位線定理可得GE∥SA,則∠GEF為異面直線EF與SA所成的角,判斷三角形為等腰直角三角形即可.【詳解】取AC中點G,連接EG,GF,F(xiàn)C設(shè)棱長為2,則CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF為異面直線EF與SA所成的角∵EF=,GE=1,GF=1∴△GEF為等腰直角三角形,故∠GEF=45°故選:B.【點睛】求異面直線所成的角先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.2、B【解析】令,可以求得,即可求出解析式,進而求出函數(shù)值.【詳解】根據(jù)題意,令,為常數(shù),可得,且,所以時有,將代入,等式成立,所以是的一個解,因為隨的增大而增大,所以可以判斷為增函數(shù),所以可知函數(shù)有唯一解,又因為,所以,即,所以.故選:B.【點睛】本題主要考查函數(shù)單調(diào)性和函數(shù)的表示方法,屬于中檔題.3、C【解析】根據(jù)集合的交運算即可求解.【詳解】因為A=,B=,所以故選:C4、A【解析】根據(jù)三角函數(shù)的定義計算可得;【詳解】解:因為角終邊過點,所以;故選:A5、C【解析】集合,,所以{a}A故選C.6、D【解析】由線性運算的加法法則即可求解.【詳解】如圖,設(shè)AC,BD交于點O,則12故選:D7、D【解析】根據(jù)全稱量詞否定的定義可直接得到結(jié)果.【詳解】根據(jù)全稱量詞否定的定義可知:為:,使得.故選:.【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.8、B【解析】根據(jù)點,先表示出該點和原點之間的距離,再根據(jù)三角函數(shù)的定義列出等式,解方程可得答案.【詳解】因為角的終邊經(jīng)過點,則,因為,所以,且,解得,故選:B9、A【解析】先由已知條件求出,然后利用公式求解即可【詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A10、C【解析】根據(jù)余弦函數(shù)的定義有,結(jié)合是第二象限角求解即可.【詳解】由題設(shè),,整理得,又是第二象限角,所以.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作出函數(shù)的簡圖,換元,結(jié)合函數(shù)圖象可知原方程有6根可化為在區(qū)間上有兩個不等的實根,列出不等式組求解即可.【詳解】當,結(jié)合“雙勾”函數(shù)性質(zhì)可畫出函數(shù)的簡圖,如下圖,令,則由已知條件知,方程在區(qū)間上有兩個不等的實根,則,即實數(shù)的取值范圍為.故答案為:【點睛】本題主要考查了分段函數(shù)的圖象,二次方程根的分布,換元法,數(shù)形結(jié)合,屬于難題.12、4【解析】設(shè),則,,又,即,故答案為.13、16或-2【解析】討論和兩種情況討論,解方程,求的值.【詳解】當時,,成立,當時,,成立,所以或.故答案為:或14、.【解析】根據(jù)指數(shù)冪的運算性質(zhì),結(jié)合對數(shù)的運算性質(zhì)進行求解即可.【詳解】,故答案為:15、.【解析】先求圓錐底面圓的半徑,再由直角三角形求得圓錐的高,代入公式計算圓錐的體積即可?!驹斀狻吭O(shè)圓錐底面半徑為r,則由題意得,解得.∴底面圓的面積為.又圓錐的高.故圓錐的體積.【點睛】此題考查圓錐體積計算,關(guān)鍵是找到底面圓半徑和高代入計算即可,屬于簡單題目。16、【解析】如圖可知函數(shù)的最大值,當時,代入,,當時,代入,,解得則函數(shù)的解析式為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是奇函數(shù),是偶函數(shù).(2)【解析】(1)計算,可得證(2)將f(x)代入(1)中表達式化簡即可求得試題解析:(1)∵的定義域為,∴和的定義域都為.∵,∴.∴是奇函數(shù),∵,∴,∴是偶函數(shù).(2)∵,由(1)得,.∵,∴.點睛:抽象函數(shù)的奇偶性證明,先看定義域是否關(guān)于遠點對稱,然后根據(jù)奇偶函數(shù)的等式性質(zhì)進行計算便可判斷出奇偶性,計算時要注意符號的變化.18、(1)(2)(3)存在,方程為【解析】(1)根據(jù)圓與坐標軸相切表示出圓心坐標,結(jié)合已知可解;(2)注意到當點C到直線AB距離最大值為圓心到直線距離加半徑,然后可解;(3)根據(jù)圓心與弦的中點的連線垂直弦,或利用點差法可得.【小問1詳解】∵圓M與x軸相切于點(a,0),與y軸相切于點(0,a),∴圓M的圓心為M(a,a),半徑.又圓心M在直線上,∴,解得.∴圓M的方程為:.【小問2詳解】當直線AB的斜率不存在時,直線AB的方程為,∴由,解得.∴.易知圓心M到直線AB的距離,∴點C到直線AB的最大距離為.∴△ABC面積的最大值為.【小問3詳解】方法一:假設(shè)存在弦AB被點P平分,即P為AB的中點.又∵,∴.又∵直線MP的斜率為,∴直線AB的斜率為-.∴.∴存在直線AB的方程為時,弦AB被點P平分.方法二:由(2)易知當直線AB的斜率不存在時,,∴此時點P不平分AB.當直線AB的斜率存在時,,假設(shè)點P平分弦AB.∵點A、B是圓M上的點,設(shè),.∴由點差法得.由點P是弦AB的中點,可得,∴.∴∴存在直線AB的方程為時,弦AB被點P平分.19、(1)(2)【解析】(1)根據(jù)已知條件,利用判別式小于等于零列不等式可得范圍;(2)根據(jù)(1)可得,利用轉(zhuǎn)化分母,把正弦和余弦化為正切值,可得答案.【小問1詳解】關(guān)于x的不等式對恒成立,所以,解得.【小問2詳解】由(1)可知,由得.20、(1),;(2).【解析】(1)利用向量的線性運算即平面向量基本定理確定,與,的關(guān)系;(2)解法一:利用向量數(shù)量積運算公式求得向量夾角余弦值;解法二:建立平面直角坐標系,利用數(shù)量積的坐標表示確定向量夾角余弦值.【詳解】解法一:(1)由圖可知.因為E是CD的中點,所以.(2)因為,為等邊三角形,所以,,所以,所以,.設(shè)與的夾角為,則,所以在與夾角的余弦值為.解法二:(1)同解法一.(2)以A為原點,AD所在直線為x軸,過A且與AD垂直的直線為y軸建立平面直角坐標系,則,,,.因為E是CD的中點,所以,所以,,所以,.設(shè)與的夾角為,則,所以與夾角的余弦值為.【點睛】求兩個向量的數(shù)量積有三種方法:利用定義;利用向量的坐標運算;利用數(shù)量積的幾何意義.具體應(yīng)用時可根據(jù)已知條件的特征來選擇,同時要注意數(shù)量積運算律的應(yīng)用21、(1)或;(2)【解析】分析:(1)由題意,設(shè)所求的直線方程為,分離令和,求得在坐標軸上的截距,利用三角形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論