版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省大慶市四中2026屆數(shù)學高二上期末調研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.將函數(shù)圖象上所有點橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.3.已知,,2成等差數(shù)列,則在平面直角坐標系中,點M(x,y)的軌跡為()A. B.C. D.4.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當p=p0時,f(p)最大,則p0=()A. B.C. D.5.有這樣一道題目:“戴氏善屠,日益功倍.初日屠五兩,今三十日屠訖,向共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?"在這個問題中,該屠夫前5天所屠肉的總兩數(shù)為()A.35 B.75C.155 D.3156.已知拋物線的焦點為F,過點F分別作兩條直線,直線與拋物線C交于A、B兩點,直線與拋物線C交于D、E兩點,若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.127.已知不等式的解集為,關于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.8.若,則x的值為()A.4 B.6C.4或6 D.89.設實數(shù),滿足,則的最小值為()A.5 B.6C.7 D.810.設是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-1311.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.12.若點在橢圓的外部,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:上有兩動點,,且,則線段的中點到軸距離的最小值是___________.14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______16.如圖,把橢圓的長軸八等分,過每個分點作軸的垂線交橢圓的上半部分于,,,七個點,是橢圓的一個焦點,則的值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長18.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同兩點E,F(xiàn),點O為坐標原點,且,當?shù)拿娣e取最大值時,求的取值范圍19.(12分)為深入學習貫徹總書記在黨史學習教育動員大會上的重要講話精神和中共中央有關決策部署,推動教育系統(tǒng)圍繞建黨百年重大主題,深化中學在校師生理想信念教育,引導師生學史明理、學史增信、學史崇德、學史力行,以昂揚的狀態(tài)迎接中國共產(chǎn)黨建黨周年,哈工大附中高二年級組織本年級同學開展了一場黨史知識競賽.為了解本次知識競賽的整體情況,隨機抽取了名學生的成績作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識競賽成績的第50百分位數(shù)(精確到0.1);(2)已知該樣本分數(shù)在的學生中,男生占,女生占現(xiàn)從該樣本分數(shù)在的學生中隨機抽出人,求至少有人是女生的概率.20.(12分)設:實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.21.(12分)已知橢圓:的一個焦點與曲線的焦點重合,且離心率為.(1)求橢圓的方程(2)設直線:交橢圓于M,N兩點.①若且的面積為,求的值.②若軸上的任意一點到直線與直線(為橢圓的右焦點)的距離相等,求證:直線恒過定點,并求出該定點坐標22.(10分)已知橢圓的短軸長為2,左、右焦點分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標準方程;(2)若A,B為橢圓C上位于x軸同側的兩點,且,共線,求四邊形的面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對求導,取得函數(shù)在上有極值的等價條件,再根據(jù)充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當時,,當時,,即在上單調遞減,在上單調遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因為,但是由推不出,因此是函數(shù)在上有極值的必要不充分條件故選:B2、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A3、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設誰,再根據(jù)題干將等量關系轉化為代數(shù)關系,從而列出方程,化簡即可.4、A【解析】解設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當且僅當,即時,等號成立,即,故選:A5、C【解析】構造等比數(shù)列模型,利用等比數(shù)列的前項和公式計算可得結果.【詳解】由題意可得該屠夫每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此前5天所屠肉的總兩數(shù)為.故選:C.【點睛】本題考查了等比數(shù)列模型,考查了等比數(shù)列的前項和公式,屬于基礎題.6、C【解析】設兩條直線方程,與拋物線聯(lián)立,求出弦長的表達式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點坐標為,設直線:,直線:,聯(lián)立得:,所以,所以焦點弦,同理得:,所以,因為,所以,故選:C7、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B8、C【解析】根據(jù)組合數(shù)的性質可求解.【詳解】,或,即或.故選:C9、A【解析】作出不等式組的可行域,利用目標函數(shù)的幾何意義,利用數(shù)形結合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當直線經(jīng)過點時,直線的截距最小,則,故選:10、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.11、D【解析】根據(jù)漸近線方程求得關系,結合離心率的計算公式,即可求得結果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.12、B【解析】根據(jù)題中條件,得到,求解,即可得出結果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設拋物線的焦點為,由,結合拋物線的定義可得線段的中點到軸距離的最小值.【詳解】設拋物線的焦點為,點在拋物線的準線上的投影為,點在直線上的投影為,線段的中點為,點到軸的距離為,則,∴,當且僅當即三點共線時等號成立,∴線段的中點到軸距離的最小值是2,故答案為:2.14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設,根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設,則,,,由,即,解得,所以,故,設為平面ACQ的一個法向量,因為,,由,即,所以,設直線AP與平面ACQ所成角為,則.故答案為:15、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.16、28【解析】設橢圓的另一個焦點為由橢圓的幾何性質可知:,同理可得,且,故,故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1)(2)【解析】(1)設點,根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設,,,聯(lián)立直線與橢圓方程,根據(jù)韋達定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據(jù)對勾函數(shù)求出最值.【小問1詳解】設點,由題意知,所以:,則,當時,取得最大值,即,故橢圓C的標準方程是【小問2詳解】設,,,則由得,,點O到直線l的距離,對用均值不等式,則:當且僅當即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌跡為橢圓且點,為橢圓的左、右焦點,即記,則于是:,由對勾函數(shù)的性質:當時,,且,故的取值范圍為19、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數(shù)的定義求出知識競賽成績的第50百分位數(shù);(2)先利用分層抽樣求出男、女生的人數(shù),利用古典概型求概率.【小問1詳解】,由,解得設該次知識競賽成績的第50百分位數(shù)為x,則,解得:.即該次知識競賽成績的第50百分位數(shù)為【小問2詳解】由頻率分布直方圖可知:分數(shù)在)的人數(shù)有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為20、(1)(2)【解析】(1)首先分別求出、為真時參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問1詳解】解:當時,,即,解得,即為真時,實數(shù)的取值范圍為實數(shù)滿足,即,解得:,即為真時,實數(shù)的取值范圍為因,所以,即;【小問2詳解】解:由,即,所以,因為是的充分不必要條件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;21、(1)(2)①;②證明見解析,定點的坐標為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達定理整體思想,列出關于的方程從而得解;②由已知可知,得到關于、的一次關系式可得證.【小問1詳解】由已知橢圓的右焦點坐標為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設,,則,解得,∴,,點到直線的距離為,∴,解得(舍去負值),∴.②設,,將與橢圓方程聯(lián)立,得,當時,∴,,,若軸上任意一點到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過一定點,該定點的坐標為.22、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標準方程.(2)延長,交橢圓C于點.設出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省雄安新區(qū)2026屆高三上學期1月期末考試歷史試卷(含答案)
- 安徽省蕪湖市無為市部分學校2025-2026年九年級上學期1月期末考試道德與法治試卷(含答案)
- 2025-2026學年天津市河北區(qū)九年級(上)期末物理試卷(含答案)
- 五年級下冊期末考試卷及答案
- 網(wǎng)易筆試題庫及答案
- 2022-2023年部編版八年級語文(上冊期末)練習及答案
- 成都風俗習慣禮儀知識
- 烏馬河2022年事業(yè)編招聘考試模擬試題及答案解析19
- 2022~2023水利設施管養(yǎng)人員考試題庫及答案第627期
- 數(shù)理方程考試試卷及答案
- 2024南海農(nóng)商銀行科技金融專業(yè)人才社會招聘筆試歷年典型考題及考點剖析附帶答案詳解
- 輸電專業(yè)十八項反措內容宣貫
- 通信工程施工企業(yè)安全生產(chǎn)管理人員知識考核題庫500題-含答案
- 危險化學品安全風險專項辨識與管控措施
- 中建精裝修工程檢驗批劃分方案
- 區(qū)間閉塞設備維護課件:表示燈電路識讀
- 人教版數(shù)學八年級上冊《等邊三角形的性質和判定》說課稿
- 股骨骨折伴發(fā)糖尿病患者護理查房
- 光化學和光催化反應的應用
- VDA6.3-2016過程審核主要證據(jù)清單
- 辦公耗材采購 投標方案(技術方案)
評論
0/150
提交評論