版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
陜西省渭南市臨渭區(qū)尚德中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)2.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.3.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.4.過雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.5.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.6.已知向量,是單位向量,若,則()A. B. C. D.7.設(shè),點(diǎn),,,,設(shè)對(duì)一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.8.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.849.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)10.集合,則()A. B. C. D.11.已知實(shí)數(shù),滿足,則的最大值等于()A.2 B. C.4 D.812.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.25二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_______.15.已知多項(xiàng)式的各項(xiàng)系數(shù)之和為32,則展開式中含項(xiàng)的系數(shù)為______.16.函數(shù)的定義域是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公比為的無窮等比數(shù)列,其前項(xiàng)和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并作答.18.(12分)某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計(jì),該公司每年為這一萬名參保人員支出的各種費(fèi)用為一百萬元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購買該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒有購買該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購買此項(xiàng)保險(xiǎn)是否劃算?19.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.20.(12分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.21.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.22.(10分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點(diǎn).(1)求的值及該圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
求解一元二次不等式化簡A,求解對(duì)數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.2、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.4、C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.5、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.6、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.7、A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.8、D【解析】
利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)椋栽谏蠁握{(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.10、D【解析】
利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見集合的符號(hào)表示,本題屬于基礎(chǔ)題.11、D【解析】
畫出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.12、C【解析】
通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點(diǎn)睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.15、【解析】
令可得各項(xiàng)系數(shù)和為,得出,根據(jù)第一個(gè)因式展開式的常數(shù)項(xiàng)與第二個(gè)因式的展開式含一次項(xiàng)的積與第一個(gè)因式展開式含x的一次項(xiàng)與第二個(gè)因式常數(shù)項(xiàng)的積的和即為展開式中含項(xiàng),可得解.【詳解】令,則得,解得,所以展開式中含項(xiàng)為:,故答案為:【點(diǎn)睛】本題主要考查了二項(xiàng)展開式的系數(shù)和,二項(xiàng)展開式特定項(xiàng),賦值法,屬于中檔題.16、【解析】
由于偶次根式中被開方數(shù)非負(fù),對(duì)數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】
選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關(guān)于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進(jìn)而可得出結(jié)論.【詳解】選擇①:因?yàn)椋?,所以.令,即,,所以使得的正整?shù)的最小值為;選擇②:因?yàn)椋?,.因?yàn)椋圆淮嬖跐M足條件的正整數(shù);選擇③:因?yàn)?,所以,所以.令,即,整理得.?dāng)為偶數(shù)時(shí),原不等式無解;當(dāng)為奇數(shù)時(shí),原不等式等價(jià)于,所以使得的正整數(shù)的最小值為.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.18、(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費(fèi)的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計(jì)算參保與不參保時(shí)的期望,,比較大小即可.【詳解】解:(1)由,解得.保險(xiǎn)公司每年收取的保費(fèi)為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項(xiàng)保險(xiǎn),則的取值為∴(元).②若該老人沒有購買此項(xiàng)保險(xiǎn),則的取值為.∴(元).∴年齡為的該老人購買此項(xiàng)保險(xiǎn)比較劃算.【點(diǎn)睛】本題考查學(xué)生利用相關(guān)統(tǒng)計(jì)圖表知識(shí)處理實(shí)際問題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學(xué)期望是平均數(shù)的另一種數(shù)學(xué)語言,為容易題.19、(1)證明見詳解;(2).【解析】
(1)取中點(diǎn)為,通過證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.20、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.21、(1)見解析;(2)證明見解析.【解析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,,易知為上的增函數(shù),又,所以是的唯一零點(diǎn);(2)證明:當(dāng)時(shí),,①若,則,所以成立,②若,設(shè),則,令,則,因?yàn)?,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點(diǎn)的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.22、(1),圓的方程為:.(2)答案見解析【解析】
(1)根據(jù)題意,可知點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 營銷活動(dòng)策劃方案堅(jiān)果(3篇)
- 許昌鉆孔施工方案(3篇)
- 城市供水管網(wǎng)改造工程施工組織設(shè)計(jì)方案
- 透明upvc施工方案(3篇)
- 鏟車打孔施工方案(3篇)
- 防汛平臺(tái)施工方案(3篇)
- 高級(jí)活動(dòng)節(jié)目策劃方案(3篇)
- 水毀河堤修復(fù)工程施工方案
- 2026年5C管理技能進(jìn)階題庫企業(yè)員工素養(yǎng)
- 2026年及未來5年市場數(shù)據(jù)中國酒店餐飲行業(yè)市場發(fā)展數(shù)據(jù)監(jiān)測及投資戰(zhàn)略咨詢報(bào)告
- 2026年無錫工藝職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試題庫附答案解析
- 2026年中考語文一輪復(fù)習(xí)課件:記敘文類閱讀技巧及示例
- 培訓(xùn)中心收費(fèi)與退費(fèi)制度
- 2025腫瘤靶向藥物皮膚不良反應(yīng)管理專家共識(shí)解讀課件
- 腳手架施工安全技術(shù)交底標(biāo)準(zhǔn)模板
- 設(shè)備部2025年度工作總結(jié)報(bào)告
- (2026年)壓力性損傷的預(yù)防和護(hù)理課件
- 化工廠設(shè)備維護(hù)保養(yǎng)培訓(xùn)
- 淘寶主體變更合同范本
- 《交易心理分析》中文
- 2025中國電信股份有限公司重慶分公司社會(huì)成熟人才招聘筆試考試參考題庫及答案解析
評(píng)論
0/150
提交評(píng)論